基于算法融合和级联方法的锂纳米电池剩余使用寿命预测

Energy Storage Pub Date : 2025-07-12 DOI:10.1002/est2.70219
Sreejaun Thothaathiri Janaki, Naresh Gnanasekaran, Dinesh Kumar Madheswaran, Praveenkumar Thangavelu, Sivanesan Murugesan
{"title":"基于算法融合和级联方法的锂纳米电池剩余使用寿命预测","authors":"Sreejaun Thothaathiri Janaki,&nbsp;Naresh Gnanasekaran,&nbsp;Dinesh Kumar Madheswaran,&nbsp;Praveenkumar Thangavelu,&nbsp;Sivanesan Murugesan","doi":"10.1002/est2.70219","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Lithium-NMC batteries in electric vehicles exhibit complex degradation mechanisms, where capacity fade, internal resistance growth, and discharge behavior evolve nonlinearly under varying operating conditions. Accurate remaining useful life prediction necessitates capturing these intricate interdependencies, which traditional models fail to generalize effectively. This study develops a robust machine-learning framework leveraging experimental cycling data under nominal and over-discharge conditions. Key parameters like voltage, discharge time, internal resistance, and state of health were chosen due to their direct correlation with electrochemical aging, resistive losses, and failure progression, ensuring high sensitivity to degradation dynamics. Support Vector Regression and Bayesian-optimized Lasso Regression were employed to model these dependencies, providing precise predictions of key battery health indicators. A hybrid framework integrating these models for remaining useful life estimation achieved <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$$ {R}^2 $$</annotation>\n </semantics></math>, MAE, RMSE of 0.9998, 0.093 and 0.138 respectively, significantly outperforming conventional approaches. Rigorous evaluation through K-fold cross-validation and subset stability analysis ensured generalizability across diverse operating conditions. Benchmark comparisons with state-of-the-art methods demonstrated superior predictive accuracy. By addressing critical limitations in traditional degradation modeling, this work provides a scalable, data-driven solution for real-time battery health management, enhancing the reliability and sustainability of electric vehicle applications.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remaining Useful Life Prediction of Li-NMC Batteries Using Algorithmic Fusion and Cascading Approach\",\"authors\":\"Sreejaun Thothaathiri Janaki,&nbsp;Naresh Gnanasekaran,&nbsp;Dinesh Kumar Madheswaran,&nbsp;Praveenkumar Thangavelu,&nbsp;Sivanesan Murugesan\",\"doi\":\"10.1002/est2.70219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Lithium-NMC batteries in electric vehicles exhibit complex degradation mechanisms, where capacity fade, internal resistance growth, and discharge behavior evolve nonlinearly under varying operating conditions. Accurate remaining useful life prediction necessitates capturing these intricate interdependencies, which traditional models fail to generalize effectively. This study develops a robust machine-learning framework leveraging experimental cycling data under nominal and over-discharge conditions. Key parameters like voltage, discharge time, internal resistance, and state of health were chosen due to their direct correlation with electrochemical aging, resistive losses, and failure progression, ensuring high sensitivity to degradation dynamics. Support Vector Regression and Bayesian-optimized Lasso Regression were employed to model these dependencies, providing precise predictions of key battery health indicators. A hybrid framework integrating these models for remaining useful life estimation achieved <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$$ {R}^2 $$</annotation>\\n </semantics></math>, MAE, RMSE of 0.9998, 0.093 and 0.138 respectively, significantly outperforming conventional approaches. Rigorous evaluation through K-fold cross-validation and subset stability analysis ensured generalizability across diverse operating conditions. Benchmark comparisons with state-of-the-art methods demonstrated superior predictive accuracy. By addressing critical limitations in traditional degradation modeling, this work provides a scalable, data-driven solution for real-time battery health management, enhancing the reliability and sustainability of electric vehicle applications.</p>\\n </div>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":\"7 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.70219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电动汽车用锂- nmc电池表现出复杂的退化机制,在不同的运行条件下,电池容量衰减、内阻增长和放电行为非线性演化。准确的剩余使用寿命预测需要捕获这些复杂的相互依赖关系,传统模型无法有效地概括这些相互依赖关系。本研究开发了一个强大的机器学习框架,利用标称和过放电条件下的实验循环数据。选择电压、放电时间、内阻和健康状态等关键参数,是因为它们与电化学老化、电阻损耗和失效进展直接相关,确保了对降解动力学的高灵敏度。使用支持向量回归和贝叶斯优化Lasso回归对这些依赖关系建模,提供关键电池健康指标的精确预测。综合这些模型的混合框架估算剩余使用寿命的r2 $$ {R}^2 $$、MAE、RMSE分别为0.9998、0.093和0.138,显著优于传统方法。通过K-fold交叉验证和子集稳定性分析进行严格评估,确保了在不同操作条件下的通用性。与最先进的方法进行基准比较显示出优越的预测准确性。通过解决传统退化建模的关键限制,这项工作为实时电池健康管理提供了可扩展的、数据驱动的解决方案,提高了电动汽车应用的可靠性和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remaining Useful Life Prediction of Li-NMC Batteries Using Algorithmic Fusion and Cascading Approach

Lithium-NMC batteries in electric vehicles exhibit complex degradation mechanisms, where capacity fade, internal resistance growth, and discharge behavior evolve nonlinearly under varying operating conditions. Accurate remaining useful life prediction necessitates capturing these intricate interdependencies, which traditional models fail to generalize effectively. This study develops a robust machine-learning framework leveraging experimental cycling data under nominal and over-discharge conditions. Key parameters like voltage, discharge time, internal resistance, and state of health were chosen due to their direct correlation with electrochemical aging, resistive losses, and failure progression, ensuring high sensitivity to degradation dynamics. Support Vector Regression and Bayesian-optimized Lasso Regression were employed to model these dependencies, providing precise predictions of key battery health indicators. A hybrid framework integrating these models for remaining useful life estimation achieved R 2 $$ {R}^2 $$ , MAE, RMSE of 0.9998, 0.093 and 0.138 respectively, significantly outperforming conventional approaches. Rigorous evaluation through K-fold cross-validation and subset stability analysis ensured generalizability across diverse operating conditions. Benchmark comparisons with state-of-the-art methods demonstrated superior predictive accuracy. By addressing critical limitations in traditional degradation modeling, this work provides a scalable, data-driven solution for real-time battery health management, enhancing the reliability and sustainability of electric vehicle applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信