Sudeep Pandey, Phillip Roberts, Sudeep Bag, Alana L Jacobson, Rajagopalbabu Srinivasan
{"title":"A phloem-limited RNA phytovirus infection does not positively modulate vector preference and fitness in primary and alternate hosts.","authors":"Sudeep Pandey, Phillip Roberts, Sudeep Bag, Alana L Jacobson, Rajagopalbabu Srinivasan","doi":"10.1093/ee/nvaf005","DOIUrl":"10.1093/ee/nvaf005","url":null,"abstract":"<p><p>Colonizing aphids play an important role in the transmission of RNA phytoviruses in the family Solemoviridae. According to \"host manipulation hypothesis,\" phloem limited and persistently transmitted Solemoviridae viruses modulate host physiology that positively affects vector behavior and fitness and facilitates virus spread. However, it is unclear if virus-modulated host effects on vectors across pathosystems involving Solemoviridae members are always positive. Cotton leafroll dwarf virus (CLRDV) is a recently introduced Solemoviridae member in the United States, and it is transmitted by the cotton aphid (Aphis gossypii). Effects of CLRDV infection on vector behavior and fitness were evaluated on its primary host plant, cotton (Gossypium hirsutum), and an alternate host plant, hibiscus (Hibiscus acetosella). In this study, changes to viruliferous and non-viruliferous aphid preference and aphid fitness on virus-infected and non-infected hosts were examined. In contrast to the hypothesized preference of non-viruliferous aphids for infected plants and vice-versa, both viruliferous and non-viruliferous A. gossypii preferred non-infected cotton and hibiscus plants over CLRDV-infected plants. This suggested that the preference of non-viruliferous vectors to non-infected plants might negatively impact virus acquisition, whereas the preference of viruliferous vectors toward non-infected plants could positively facilitate virus inoculation. The total fecundity and intrinsic rate of increase of aphids were higher on non-infected plants compared with CLRDV-infected plants. The lack of enhanced fitness benefits on CLRDV-infected hosts also could negatively impact virus spread. Overall, this study suggested that \"host manipulation hypothesis\" favoring vector attraction and enhanced fitness on infected plants does not apply to all pathosystems involving Solemoviridae members.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":"341-351"},"PeriodicalIF":1.8,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12005951/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143188663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
William R Morrison, Marco A Ponce, Joseph Castaldi, Avery James, Ian Stoll, Jenna Moreland, Jennifer Abshire, Tania N Kim, Alison R Gerken
{"title":"Season-long microbial dynamics from the cuticle of rice weevil originating at food facilities after dispersal to novel food patches.","authors":"William R Morrison, Marco A Ponce, Joseph Castaldi, Avery James, Ian Stoll, Jenna Moreland, Jennifer Abshire, Tania N Kim, Alison R Gerken","doi":"10.1093/ee/nvaf012","DOIUrl":"10.1093/ee/nvaf012","url":null,"abstract":"<p><p>Stored-product insects may pose food safety concerns due to their capacity to vector harmful microbes. As climate change progresses, the propensity for vectoring may be affected by temperature. Vectoring capacity may also fluctuate over the season. Thus, we evaluated (i) how the area of microbial growth and morphospecies richness vary over the season from field-collected Sitophilus oryzae that were allowed to disperse onto a novel food patch habitat comprised of agar and (ii) whether temperature in the week preceding collection of S. oryzae affected growth and richness. On a weekly basis during 2022 and 2023, we introduced S. oryzae onto agar, and photographed patches at 3 and 5 d, characterizing growth with ImageJ and visually scoring richness. There was 1.4- to 1.6-fold more microbial growth in patches at 5 d compared to 3 d in both years. The greatest microbial growth consistently occurred from S. oryzae collected during the wheat and maize harvest in grain bins, while morphospecies richness increased progressively over time. We observed an 11-fold and 3-fold increase in the number of morphospecies at the end of the season compared to the beginning in 2022 and 2023. There was 2.1- to 316-fold more microbial growth during the wheat (Jun to Jul) and maize harvest (Sep to Oct) compared to early May. We found a positive exponential relationship between temperature in the field and microbial growth in both years. This study expands our understanding of insect-microbe interactions after harvest and highlights variable periods of risk by food facilities over the season.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":"296-308"},"PeriodicalIF":1.8,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143467380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lindsey R Milbrath, Jeromy Biazzo, Janet van Zoeren
{"title":"Flight phenology and influence of region and habitat on the abundance of Xylosandrus germanus and Anisandrus maiche (Coleoptera: Curculionidae: Scolytinae) in New York.","authors":"Lindsey R Milbrath, Jeromy Biazzo, Janet van Zoeren","doi":"10.1093/ee/nvaf010","DOIUrl":"10.1093/ee/nvaf010","url":null,"abstract":"<p><p>The non-native wood-boring and symbiotic fungus-culturing Xylosandrus germanus (Blandford) was first reported in New York apple orchards in 2013. Trapping surveys have been conducted annually since to assist growers in timely applications of preventative control measures. In 2021, a similar-looking introduced species, Anisandrus maiche (Kurentsov), was identified in traps in west central New York. Anisandrus maiche was first recorded in 2005 in Pennsylvania but its history in New York was unclear due to potential misidentification. We collected and identified ambrosia beetles using ethanol-baited bottle traps in 2022 and 2023 in New York at 2 commercial apple orchards near Lake Ontario and 2 cider apple orchards in the lower Finger Lakes district. Traps were placed in a forest interior, the forest edge, and the orchard edge at each site. Xylosandrus germanus was trapped from mid-April into early October; it was abundant in the Lake Ontario region but less so in the Finger Lakes. In contrast, counts of A. maiche were very high in the Finger Lakes but extremely low near Lake Ontario. It was trapped from late-May to mid-September. Most other bark and ambrosia beetle species were uncommon. Captures of X. germanus and A. maiche were generally highest in the forest interior and declined toward the orchard edge, but each species was usually present in traps across habitats at the same time. Thus, the practice of trapping at forest edges should continue. Both species can potentially infest stressed trees, including in orchards, throughout the growing season.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":"386-393"},"PeriodicalIF":1.8,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143058014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Testing multispecies pheromone blends of longhorned beetles (Coleoptera: Cerambycidae) in southern Texas.","authors":"Marlin E Rice, Jocelyn G Millar, Lawrence M Hanks","doi":"10.1093/ee/nvaf022","DOIUrl":"10.1093/ee/nvaf022","url":null,"abstract":"<p><p>Aggregation-sex pheromones, that attract both sexes, are produced by male cerambycid beetles (Coleoptera: Cerambycidae) of the subfamilies Cerambycinae, Lamiinae, and Spondylidinae. Here, we present the results of a field experiment conducted at multiple sites in southern Texas, primarily near the border with the state of Tamaulipas, Mexico. At each site, we deployed traps baited with a 6-component blend of known pheromones of cerambycine and lamiine species + an ethanol lure, a 5-component blend of lamiine pheromones + an ethanol lure, an ethanol lure alone, and a solvent control. Over a ~3-wk period, 846 beetles of 51 species were trapped, representing 36 cerambycine, 14 lamiine, and one prionine species, and one species in the closely related family Disteniidae. For species collected from at least 5 study sites, nonparametric tests of treatment effects revealed that the generic 6-component blend + ethanol attracted significant numbers of one cerambycine species, while the lamiine blend + ethanol attracted one cerambycine species and 2 lamiine species. The ethanol lure attracted 2 additional cerambycine species in significant numbers. For species that were captured at fewer sites, chi-square goodness-of-fit tests showed that the 2 pheromone blends + ethanol attracted significant numbers of another 6 species of cerambycines and 4 species of lamiines. Captures noteworthy from the standpoint of collection records include the rare species Leptostylopsis lutea Dillon, and Lochmaeocles cornuticeps cornuticeps (Schaeffer) and Thryallis undatus (Chevrolet), 2 species which have rarely been reported outside Sabal Palm Sanctuary in Cameron County, Texas.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":"267-273"},"PeriodicalIF":1.8,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143556189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Yang, Xi Wen, Xingrui Huang, Jie Zou, Yun Lu, Fang Yuan, Sijie Xiao, Xiaochao Tang, Zhixiao Liu, Zhengwei Wu, Xinglong Huang
{"title":"Characterization of two cellular superoxide dismutases in Protohermes xanthodes (Megaloptera: Corydalidae) in response to sublethal chlorpyrifos stress.","authors":"Jie Yang, Xi Wen, Xingrui Huang, Jie Zou, Yun Lu, Fang Yuan, Sijie Xiao, Xiaochao Tang, Zhixiao Liu, Zhengwei Wu, Xinglong Huang","doi":"10.1093/ee/nvaf015","DOIUrl":"10.1093/ee/nvaf015","url":null,"abstract":"<p><p>Pesticides released into the environment are increasingly recognized as a global threat to freshwater ecosystems because of their adverse effects on non-target organisms, particularly aquatic insects and other arthropods. Superoxide dismutases (SODs) are important antioxidant enzymes that play a crucial role in protecting organisms from oxidative stress induced by harmful materials. In this study, we identified 2 cellular SODs (PxSOD1 and PxSOD2) in Protohermes xanthodes Navás (Megaloptera: Corydalidae), an freshwater predatory insect, and determined the oxidative stress induced in P. xanthodes larvae by sublethal exposure to chlorpyrifos (CPF). PxSOD1 and PxSOD2 are members of the cytoplasmic Cu/ZnSODs and mitochondrial MnSODs, respectively, and differ substantially in protein structure. Both PxSOD1 and PxSOD2 recombinant proteins demonstrated catalytic activity toward O2•- in the activity assays. After exposure to sublethal concentrations of CPF, malondialdehyde (MDA) content and SOD activities were increased in P. xanthodes larvae in a dose-dependent manner. PxSOD1 expression was decreased in the 0.42 and 4.2 μg/L CPF groups and increased in the 4.2 μg/L CPF group. PxSOD2 was upregulated by 0.42, 4.2, and 8.4 μg/L CPF treatments and the expression levels in the 4.2 and 8.4 μg/L CPF groups were significantly higher than that in the no CPF control. Our results suggest that sublethal concentrations of CPF can induce oxidative stress in P. xanthodes larvae, and the cellular SODs in P. xanthodes larvae may contribute to the protection against CPF-induced oxidative stress.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":"309-319"},"PeriodicalIF":1.8,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143406359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marianne E Davenport, Barbara J Bentz, E Matthew Hansen, Gregory J Ragland
{"title":"Variability in spruce beetle (Coleoptera: Curculionidae, Scolytinae) adult diapause and evidence for oocyte development prior to winter in a Colorado population.","authors":"Marianne E Davenport, Barbara J Bentz, E Matthew Hansen, Gregory J Ragland","doi":"10.1093/ee/nvae104","DOIUrl":"10.1093/ee/nvae104","url":null,"abstract":"<p><p>Diapause regulates seasonal insect life cycles and may be highly variable within and among populations due to genetic and environmental variability. Both types of variation may influence how populations respond plastically or evolutionarily to changing climates. We assessed diapause variability in spruce beetle Dendroctonus rufipennis Kirby (Coleoptera: Curculionidae, Scolytinae), a major forest pest whose life cycle timing is regulated by both prepupal and adult diapauses. Using mating studies and ovary dissections, we tested for variability in adult diapause within and between collection sites in Colorado and Wyoming, USA. Ovary morphology suggested that most females from both sites enter diapause prior to egg formation (oogenesis) when reared at warm temperatures. Though previous studies suggested that adult diapause is obligate, we found that a small proportion of females from both populations terminated diapause without winter chilling in the lab. Moreover, we found that most female beetles sampled at the Colorado field site had mature ovaries relatively early in the fall, suggesting that transient exposure to low temperatures may potentiate pre-winter reproductive development. Adult diapause may act primarily as a block to prevent offspring production late in the season but not necessarily as an overwintering phenotype. Overall, our data do not suggest imminent life cycle shifts mediated by adult diapause, but if the observed variability is heritable, diapause regulation may evolve in response to changing environmental conditions.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":"154-166"},"PeriodicalIF":1.8,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Allysen M Welty Peachey, Ethan R Moses, Adesola J Johnson, Meredith G M Lehman, James M Yoder, Stefano G De Faveri, Jodie Cheesman, Nicholas C Manoukis, Matthew S Siderhurst
{"title":"Wind effects on individual male and female Bactrocera jarvisi (Diptera: Tephritidae) tracked using harmonic radar.","authors":"Allysen M Welty Peachey, Ethan R Moses, Adesola J Johnson, Meredith G M Lehman, James M Yoder, Stefano G De Faveri, Jodie Cheesman, Nicholas C Manoukis, Matthew S Siderhurst","doi":"10.1093/ee/nvae108","DOIUrl":"10.1093/ee/nvae108","url":null,"abstract":"<p><p>Wind affects the movement of most volant insects. While the effects of wind on dispersal are relatively well understood at the population level, how wind influences the movement parameters of individual insects in the wild is less clear. Tephritid fruit flies, such as Bactrocera jarvisi, are major horticultural pests worldwide and while most tephritids are nondispersive when host plants are plentiful, records exist for potentially wind-assisted movements up to 200 km. In this study, harmonic radar (HR) was used to track the movements of both male and female lab-reared B. jarvisi in a papaya field. Overall flight directions were found to be correlated with wind direction, as were the subset of between-tree movements, while within-tree movements were not. Furthermore, the effect of wind direction on fly trajectories varied by step-distance but not strongly with wind speed. Mean path distance, step distance, flight direction, turning angle, and flight propensity did not vary by sex. Both male and female movements are well fit by 2-state hidden Markov models further supporting the observation that B. jarvisi move differently within (short steps with random direction) and between (longer more directional steps) trees. Data on flight directionality and step-distances determined in this study provide parameters for models that may help enhance current surveillance, control, and eradication methods, such as optimizing trap placements and pesticide applications, determining release sites for parasitoids, and setting quarantine boundaries after incursions.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":"1-14"},"PeriodicalIF":1.8,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Validating a variable-instar, climate-based phenology model for the Asian longhorned beetle (Coleoptera: Cerambycidae) using field data from South Carolina.","authors":"Lena R Schmitt, R Talbot Trotter, David R Coyle","doi":"10.1093/ee/nvae127","DOIUrl":"https://doi.org/10.1093/ee/nvae127","url":null,"abstract":"<p><p>The Asian longhorned beetle, Anoplophora glabripennis (ALB, Coleoptera: Cerambycidae), is a federally regulated invasive species capable of infesting several different genera of hardwood trees. Accurate knowledge of ALB's phenology is critical for the effective implementation of management and eradication plans. We updated the ALBLT prediction model and used empirical data collected in South Carolina, USA to validate ALBLT v. 2.0. The new model largely agreed with ALB life stages found in field collections, except for late instars and pupae. We also ran the model at 8 other potentially high-risk cities in the contiguous United States with latitudes ranging from 28°N (Tampa, FL) to 41°N (Chicago, IL) to predict how long a single ALB generation might take to develop in these environments. Model predictions ranged from a 2-3-yr lifecycle in Chicago to a potential life cycle of < 1 yr in Tampa. These predictions can help inform managers and invasive species specialists should ALB be found in new environments, and these data can aid in developing an adequate management and eradication plan.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143457337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simulated winter climate change reveals greater cold than warm temperature tolerance in Chrysolina polita (Coleoptera: Chrysomelidae).","authors":"Anni Palvi, Leena Lindström, Aigi Margus","doi":"10.1093/ee/nvae120","DOIUrl":"10.1093/ee/nvae120","url":null,"abstract":"<p><p>Climate change is expected to lead to rising winter temperatures in temperate zones, coinciding with a decrease in winter snow cover. Insects adapted to winter conditions in the temperate zone might be exposed to changing winter conditions and higher temperature fluctuations, which can affect diapause and mortality. We studied the effects of climate change on Chrysolina polita, a temperate zone species overwintering as an adult in the shallow surface of the soil. We tested the effects of increased and fluctuating temperature on the mortality and body composition of the beetles in a laboratory environment, as well as the effects of snow cover removal on the mortality and body mass in field conditions. We found that in the laboratory study, a 2 °C increase in mean temperature increased mortality and resulted in increased lipid consumption, whereas temperature fluctuation caused desiccation of the beetles but did not affect mortality compared to the control condition. In the field study, the snow removal caused the mean soil temperature to decrease by 3 °C and fluctuate (ranging from -26.4 to 2.5 °C compared to a range of -1.7 to 0.5 °C in the control), yet these differences did not affect beetle mortality or body mass. We conclude that C. polita exhibits greater resistance to cold temperatures than to higher temperatures during diapause. Therefore, the rising temperatures associated with climate change can pose challenges for overwintering.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":"167-173"},"PeriodicalIF":1.8,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837325/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142846188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transgenerational effects of imidacloprid on Sclerodermus alternatusi (Hymenoptera: Bethylidae) based on age-stage, two-sex life table.","authors":"Bingchuan Zhang, Xue Wang, Zaiyan Chen, Shulin He, Shan Xu, Fei Li, Cao Zhou","doi":"10.1093/ee/nvae112","DOIUrl":"10.1093/ee/nvae112","url":null,"abstract":"<p><p>Imidacloprid is a widely used insecticide for controlling piercing-sucking pests. However, its impact on nontarget insects must not be ignored. In this study, we assessed the effects of sublethal dose of imidacloprid on Sclerodermus alternatusi (Hymenoptera: Bethylidae), which is an important predator of many pests. The data indicate that imidacloprid at LD10 (0.1468 ng active ingredient per insect) and LD30 (0.2376 ng active ingredient per insect) significantly reduced the longevity and fecundity of the F0 generation of S. alternatusi. However, the adult female longevity of the F1 generation of the LD10 dose group showed a significant increase, and the LD30 dose group showed a nonsignificant increase. The study found that as the imidacloprid dose increased, the intrinsic rate of increase (r) decreased, while the mean generation time (T) increased. The imidacloprid groups also showed a decrease in age-stage specific survival rate (Sxj) and age-specific survival rate (lx). However, the female age-specific survival rate (fx4) showed an increasing and then decreasing trend for all treatments. The study found that imidacloprid had an impact on the longevity of S. alternatusi in the F0 generation and extended the mean generation time (T) in the F1 generation. However, it had negative effects on population growth parameters. These findings can be used as a basis for developing integrated pest management strategies.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":"215-222"},"PeriodicalIF":1.8,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142738563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}