Jean J Turgeon, John H Pedlar, Ronald E Fournier, Michael T Smith, Mary Orr, Ben Gasman
{"title":"Characteristics of logs with signs of oviposition by the polyphagous xylophage Asian longhorned beetle (Coleoptera: Cerambycidae).","authors":"Jean J Turgeon, John H Pedlar, Ronald E Fournier, Michael T Smith, Mary Orr, Ben Gasman","doi":"10.1093/ee/nvae041","DOIUrl":"https://doi.org/10.1093/ee/nvae041","url":null,"abstract":"<p><p>During the eradication program undertaken against Anoplophora glabripennis (Motschulsky) in the Greater Toronto Area, information was collected on the numerous signs of injury found on wounded trees. Herein, we used a portion of this information to assess the characteristics of logs with signs of oviposition (i.e., pits). Specifically, we related the basal diameter, type (log bole vs. log branch), height above ground, and branch hierarchy level of logs with pits to tree size (i.e., height and diameter at breast height) and level of infestation intensity. In general, pits were concentrated on logs from the bole and branches that were 8-14 cm in diameter in the lower 8 m of the bole and in the first 2 levels of the branching hierarchy. Oviposition pit location was strongly influenced by tree size-both height and diameter at breast height, with more pits on the lower bole in small trees and then higher on the bole and into the branches as tree size increased. As tree-level infestation intensity increased, pits were found on both larger and smaller diameter portions of the trees, presumably as preferred oviposition sites became saturated. These findings can improve the efficacy of surveillance activities for A. glabripennis.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Diurnal predators in dim light: the ability of mantids to prey for supper","authors":"Yuan Kuang, Leyun Wang","doi":"10.1093/ee/nvae036","DOIUrl":"https://doi.org/10.1093/ee/nvae036","url":null,"abstract":"Many insects rely heavily on visual cues in foraging and other life activities. Mantids are insect predators that usually ambush prey. The sophisticated visual system of mantids allows them to spot, track, and strike at prey with high accuracy. Mantids are categorized as diurnal animals in most cases, while our field observations suggested that they were active in foraging both day and night. Therefore, we hypothesize that predation in dim light is possible for mantids, while mantids are unable to capture prey in complete darkness. In this study, we experimentally examined whether different light conditions could affect the predation success and efficiency of mantid nymphs and adults, Hierodula chinensis Werner (Mantodea: Mantidae), through behavioral observations. Individual mantids were placed in individual chambers in complete darkness, simulated moonlight (0.1 lux), or simulated dusk (50 lux) conditions and were allowed to forage for prey items for 10 min. Our observations showed no evidence that H. chinensis could capture any prey in complete deprivation of light. The proportion of nymphs with successful predation in simulated moonlight was 50% higher than that in complete darkness and 45.83% lower than that in simulated dusk. The proportion of adults with successful predation in simulated moonlight was 42.11% higher than that in complete darkness and 57.89% lower than that in simulated dusk. Overall, the results provide new insights into the behavioral ecology of diurnal predators at night, with potential association with moonlight, starlight, and light pollution.","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":"8 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Understanding the movement and dispersal patterns of released Fopius arisanus (Hymenoptera: Braconidae) parasitoids in a papaya orchard","authors":"Avraham Eitam, Dara G Stockton, Roger I Vargas","doi":"10.1093/ee/nvae029","DOIUrl":"https://doi.org/10.1093/ee/nvae029","url":null,"abstract":"Implementation of augmentative biological control requires estimates of parasitoid dispersal from the release point to determine appropriate release density, spacing, and timing. This study evaluated the movement patterns of Fopius arisanus Sonan (Hymenoptera: Braconidae) parasitoids, which have historically been used to control invasive tephritid fruit flies. The wasps were released from the central point, and dispersal was monitored over time using parasitism in sentinel fruit and trap captures at 40 points radiating out from the center (15–240 m). The releases were conducted 4 times during June, July, September, and November 2006. The data showed that there were large declines in dispersal by distance. Parasitism was greatest closest to the release point, within 30 m. Parasitism was also greatest within the first 24 h of the release. After 1 wk, parasitism decreased from 41% to 1.5% within 30 m. These data correlated strongly with trap capture data, which also showed that parasitoid movement favored the SE region of our release site, roughly corresponding to the overall prevailing winds. Wind speed, relative humidity, and temperature all affected parasitoid movement during our trial, indicating the complex environmental factors that can affect release success. This is the first report of dispersal metrics for F. arisanus. Our findings are in agreement with other similar studies on braconid movement generally and suggest that frequent, high-density releases are most effective since the dispersal of F. arisanus is limited and retention in the environment is low. We discuss our results in the context of international augmentative biological control release programs.","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":"2 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140630609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Silvana V Paula-Moraes, Eduardo S Calixto, Abraão A Santos, Francis P F Reay-Jones, Dominic D Reisig, Yasmine Farhan, Jocelyn L Smith, William D Hutchison
{"title":"Continental-scale migration patterns and origin of Helicoverpa zea (Lepidoptera: Noctuidae) based on a biogeochemical marker","authors":"Silvana V Paula-Moraes, Eduardo S Calixto, Abraão A Santos, Francis P F Reay-Jones, Dominic D Reisig, Yasmine Farhan, Jocelyn L Smith, William D Hutchison","doi":"10.1093/ee/nvae034","DOIUrl":"https://doi.org/10.1093/ee/nvae034","url":null,"abstract":"Insect migrations have ecological and economic impacts, particularly in agriculture. However, there is limited knowledge about the migratory movements of pests at the continental scale, which is an important factor influencing the spread of resistance genes. Understanding the migratory patterns of economic pests, like Helicoverpa zea (Boddie), is essential for improving Integrated Pest Management (IPM) and Insect Resistance Management (IRM) strategies. In this study, we used stable hydrogen isotopic ratios in wing tissue as a biogeochemical marker to examine migratory patterns and estimate the native origins of H. zea individuals collected across a wide latitudinal gradient in North America. Samples collected at higher latitudes (Ontario, Canada and Minnesota, USA) exhibited a greater proportion (60%–96%) of nonlocal individuals, with an increased probability of origin from the southeastern United States. Populations from mid-latitudes (Florida, North Carolina, and South Carolina) showed a blend of local and nonlocal (40%–60%) individuals. Finally, 15% of the southernmost population individuals (Puerto Rico) were classified as migratory, with some having a probability of origin at higher latitudes (&gt;30°). Overall, our results provide evidence of a northward spring/summer migration of H. zea in North America and underscore the significance of the southeastern United States as a hub for genetic flow. In addition, based on stable hydrogen isotopic ratios, there is strong evidence of reverse (southward) migration of H. zea from the continental United States to Puerto Rico. Our study highlights the implications for IPM and IRM programs and the need for management strategies that account for both northward and southward migration patterns.","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":"26 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140630843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Blake M Dawson, Maldwyn J Evans, Philip S Barton, Masashi Soga, Kahoko Tochigi, Shinsuke Koike
{"title":"Drastic changes in ground-dwelling beetle communities following high-intensity deer culling: insights from an island ecosystem.","authors":"Blake M Dawson, Maldwyn J Evans, Philip S Barton, Masashi Soga, Kahoko Tochigi, Shinsuke Koike","doi":"10.1093/ee/nvae013","DOIUrl":"10.1093/ee/nvae013","url":null,"abstract":"<p><p>The overabundance of large herbivores can have detrimental effects on the local environment due to overgrazing. Culling is a common management practice implemented globally that can effectively control herbivore populations and allow vegetation communities to recover. However, the broader indirect effects of culling large herbivores remain relatively unknown, particularly on insect species such as ground-dwelling beetles that perform key ecosystem processes such as decomposition. Here we undertook a preliminary investigation to determine how culling sika deer on an island in North Japan impacted ground-beetle community dynamics. We conducted pitfall trapping in July and September in 2012 (before culling) and again in 2019 (after culling). We compared beetle abundance and community composition within 4 beetle families (Carabidae, Scarabaeidae, Geotrupidae, and Silphidae), across seasons and culling treatments. We found each family responded differently to deer culling. Scarabaeidae displayed the greatest decline in abundance after culling. Silphidae also had reduced abundance but to a lesser extent compared to Scarabaeidae. Carabidae had both higher and lower abundance after culling, depending on the season. We found beetle community composition differed between culling and season, but seasonal variability was reduced after culling. Overall, the culling of large herbivores resulted in a reduction of ground-dwelling beetle populations, particularly necrophagous species dependent on dung and carrion for survival. Our preliminary research highlights the need for long-term and large-scale experiments to understand the indirect ecological implications of culling programs on ecosystem processes.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":"223-229"},"PeriodicalIF":1.7,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11008735/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139944030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P Glynn Tillman, Erin E Grabarczyk, Katelyn A Kesheimer, Ted Cottrell
{"title":"Trapping strategy and diel periodicity affect capture rate of Halyomorpha halys (Hemiptera: Pentatomidae) in agroecosystems.","authors":"P Glynn Tillman, Erin E Grabarczyk, Katelyn A Kesheimer, Ted Cottrell","doi":"10.1093/ee/nvae010","DOIUrl":"10.1093/ee/nvae010","url":null,"abstract":"<p><p>The polyphagous pest, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), damages fruit in orchards and field crops and is often found within nearby woodlands. Pheromone-baited traps can be used to monitor H. halys. However, the efficiency of trapping H. halys may vary depending on trapping strategy (live vs. dead capture), location (ground or canopy), and diel periodicity of captures. We compared H. halys capture within fruiting hosts for: (i) live and kill traps on the ground vs. traps in the canopy of black cherry (Prunus serotina Ehrh.) (Rosales: Rosaceae), sugarberry (Celtis laevigata Willdenow) (Rosales: Cannabaceae), and pecan (Carya illinoinensis (Wangenh.) K. Koch) (Fagales: Juglandaceae) trees, (ii) ground and canopy-live traps in sassafras (Sassafras albidum (Nutt.) Nees) (Laurales: Lauraceae), and (iii) whether diel periodicity was detected for live capture in sassafras and cotton. More H. halys adults and nymphs were captured in kill traps than in live traps. More nymphs were captured in kill traps in black cherry and sugarberry on the ground than in the canopy. Live adult capture was significantly greater in sassafras and pecan canopies than on the ground. In cotton and sassafras, more live adults were captured from 8 PM-noon, with the fewest captured from noon-6 PM. A better understanding of stink bug activity in the field allows for improved trapping and, possibly, improved timing of treatment applications.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":"237-248"},"PeriodicalIF":1.7,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139944031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Germano Leão Demolin Leite, David Lopes Teixeira, Carlos Alberto Domingues da Silva, Pedro Guilherme Lemes, Wagner de Souza Tavares, José Eduardo Serrão, José Cola Zanuncio, Ronald Zanetti
{"title":"Interspecific insect relationships on Terminalia argentea (Myrtales: Combretaceae) trees in the Cerrado biome.","authors":"Germano Leão Demolin Leite, David Lopes Teixeira, Carlos Alberto Domingues da Silva, Pedro Guilherme Lemes, Wagner de Souza Tavares, José Eduardo Serrão, José Cola Zanuncio, Ronald Zanetti","doi":"10.1093/ee/nvae011","DOIUrl":"10.1093/ee/nvae011","url":null,"abstract":"<p><p>Terminalia argentea Mart. (Combretaceae), native to Brazil, is used in habitat restoration programs. Arthropods are bioindicators because their populations reflect changes in the environment. We evaluated the recovery of a degraded area by using ecological indices and analyzing arthropod interactions on T. argentea plants. The richness and diversity of sap-sucking Hemiptera and the abundance of tending ants and Sternorrhyncha predators increased with the number of T. argentea leaves. The correlation of the abundance of tending ants and Sternorrhyncha predators was positive with that of the sap-sucking Hemiptera, and the abundance of Sternorrhyncha predators was negative with that of tending ants and sap-sucking Hemiptera. The positive correlation between the abundance, richness, and diversity of insect groups and numbers of T. argentea leaves is an example of the bottom-up regulation mechanism, with the population dynamics of the lower trophic levels dictating those of higher trophic levels. The contribution of T. argentea, a host plant of many arthropods, to the recovery of ecological relationships between organisms in degraded ecosystems is important.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":"230-236"},"PeriodicalIF":1.7,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140027723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of microclimatic temperatures on the development period of 3 rice planthopper species (Hemiptera: Delphacidae): a phenology model based on field observations.","authors":"Ryota Mochizuki, Toshihisa Yashiro, Sachiyo Sanada-Morimura, Atsushi Maruyama","doi":"10.1093/ee/nvae005","DOIUrl":"10.1093/ee/nvae005","url":null,"abstract":"<p><p>Most pest phenology models are temperature dependent. Generally, the air temperature at reference height is used to predict pest development, but the air temperature varies between inside and outside the crop canopy, where pests reside. Here, we sampled 3 rice planthopper species-Nilaparvata lugens (Stål), Sogatella furcifera (Horváth), and Laodelphax striatellus (Fallén)-and micrometeorological observations in paddy fields to analyze how thermal environments inside the canopy affect pest development. Seasonal variations in the population density of these species were surveyed in 3 experimental fields with 2 water temperature plots (normal and low-water temperature plots). The development periods of the 3 species were predicted individually based on pest phenology models using temperatures recorded at 6 heights (0.0-2.0 m). We calculated the root mean square error (RMSE) values from the predicted and observed development periods for each rice planthopper. The development prediction using the temperature inside the canopy was more accurate than that utilizing the temperature at the reference height (2.0 m). In the low-water temperature plot, the RMSE value for N. lugens, S. furcifera, and L. striatellus was 6.4, 5.6, and 4.1 when using the temperature at the reference height (2.0 m), respectively, and 2.8, 3.8, and 2.9 when employing the temperature inside the canopy at 0.25 m, respectively. The development prediction utilizing the air temperature at the bottom (0.25 m) of canopy, where N. lugens resides, was most effective for N. lugens among the 3 species. These findings suggest the importance of utilizing microhabitat-based temperatures to predict pest development.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":"259-267"},"PeriodicalIF":1.7,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11008736/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139520204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Connor D Crouch, Richard W Hofstetter, Amanda M Grady, Nylah N S Edwards, Kristen M Waring
{"title":"Oystershell scale (Hemiptera: Diaspididae) population growth, spread, and phenology on aspen in Arizona, USA.","authors":"Connor D Crouch, Richard W Hofstetter, Amanda M Grady, Nylah N S Edwards, Kristen M Waring","doi":"10.1093/ee/nvae006","DOIUrl":"10.1093/ee/nvae006","url":null,"abstract":"<p><p>Oystershell scale (OSS; Lepidosaphes ulmi L.) is an invasive insect that threatens sustainability of aspen (Populus tremuloides Michx.) in the southwestern United States. OSS invasions have created challenges for land managers tasked with maintaining healthy aspen ecosystems for the ecological, economic, and aesthetic benefits they provide. Active management is required to suppress OSS populations and mitigate damage to aspen ecosystems, but before management strategies can be implemented, critical knowledge gaps about OSS biology and ecology must be filled. This study sought to fill these gaps by addressing 3 questions: (i) What is the short-term rate of aspen mortality in OSS-infested stands in northern Arizona, USA? (ii) What are the short-term rates of OSS population growth on trees and OSS spread among trees in aspen stands? (iii) What is the phenology of OSS on aspen and does climate influence phenology? We observed high levels of aspen mortality (annual mortality rate = 10.4%) and found that OSS spread rapidly within stands (annual spread rate = 10-12.3%). We found first, second, and young third instars throughout the year and observed 2 waves of first instars (i.e., crawlers), one throughout the summer and a second in mid-winter. The first wave appeared to be driven by warming seasonal temperatures, but the cause of the second wave is unknown and might represent a second generation. We provide recommendations for future OSS research, including suggestions for more precise quantification of OSS phenology, and discuss how our results can inform management of OSS and invaded aspen ecosystems.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":"293-304"},"PeriodicalIF":1.7,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139671534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Host plant preference of Lygus hesperus (Hemiptera: Miridae) in 4 field crops: potato, alfalfa, carrot, and pea.","authors":"Govinda Shrestha, Silvia I Rondon","doi":"10.1093/ee/nvae009","DOIUrl":"10.1093/ee/nvae009","url":null,"abstract":"<p><p>The western tarnished plant bug, Lygus hesperus (Knight), has emerged as a pest of potatoes (Solanum tuberosum L.) in the Lower Columbia Basin of Oregon and Washington. This species is generally found infesting several other field-grown crops in the region; however, their host preference is poorly understood. Thus, greenhouse cage experiments were conducted to evaluate L. hesperus host preference by simultaneously presenting adults with 4 host plants: potato, alfalfa, Medicago sativa L., carrot, Daucus carota L., and pea, Pisum sativum L. In addition, an oviposition test was conducted. The results indicated that L. hesperus actively chose as a host and as an oviposition substrate among the 4 host plants. We found a significantly higher number of adults on alfalfa and potato plants over carrot or pea plants at 6 h, 24 h, and 48 h after adults were released into the cage. However, 96 h after release, more L. hesperus were found in alfalfa. In addition, female L. hesperus strongly preferred potato and alfalfa plants as an oviposition substrate over carrot and pea plants at 96 h after release.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":"288-292"},"PeriodicalIF":1.7,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140021227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}