通过迁移学习框架实现鳞翅目害虫发育阶段的自动分类。

IF 1.8 3区 农林科学 Q2 ENTOMOLOGY
Wei-Bo Qin, Arzlan Abbas, Sohail Abbas, Aleena Alam, De-Hui Chen, Faisal Hafeez, Jamin Ali, Donato Romano, Ri-Zhao Chen
{"title":"通过迁移学习框架实现鳞翅目害虫发育阶段的自动分类。","authors":"Wei-Bo Qin, Arzlan Abbas, Sohail Abbas, Aleena Alam, De-Hui Chen, Faisal Hafeez, Jamin Ali, Donato Romano, Ri-Zhao Chen","doi":"10.1093/ee/nvae085","DOIUrl":null,"url":null,"abstract":"<p><p>The maize crop is highly susceptible to damage caused by its primary pests, which poses considerable challenges in manually identifying and controlling them at various larval developmental stages. To mitigate this issue, we propose an automated classification system aimed at identifying the different larval developmental stages of 23 instars of 4 major lepidopteran pests: the Asian corn borer, Ostrinia furnacalis (Guenée; Lepidoptera: Crambidae), the fall armyworm, Spodoptera frugiperda (J.E. Smith; Lepidoptera: Noctuidae), the oriental armyworm, Mythimna separata (Walker; Lepidoptera: Noctuidae), and the tobacco cutworm, Spodoptera litura (Fabricius; Lepidoptera: Noctuidae). Employing 5 distinct Convolutional Neural Network architectures-Convnext, Densenet121, Efficientnetv2, Mobilenet, and Resnet-we aimed to automate the process of identifying these larval developmental stages. Each model underwent fine-tuning using 2 different optimizers: stochastic gradient descent with momentum and adaptive moment estimation (Adam). Among the array of models tested, Densenet121, coupled with the Adam optimizer, exhibited the highest classification accuracy, achieving an impressive 96.65%. The configuration performed well in identifying the larval development stages of all 4 pests, with precision, recall, and F1 score evaluation indicators reaching 98.71%, 98.66%, and 98.66%, respectively. Notably, the model was ultimately tested in a natural field environment, demonstrating that Adam_Densenet121 model achieved an accuracy of 90% in identifying the 23 instars of the 4 pests. The application of transfer learning methodology showcased its effectiveness in automating the identification of larval developmental stages, underscoring promising implications for precision-integrated pest management strategies in agriculture.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated lepidopteran pest developmental stages classification via transfer learning framework.\",\"authors\":\"Wei-Bo Qin, Arzlan Abbas, Sohail Abbas, Aleena Alam, De-Hui Chen, Faisal Hafeez, Jamin Ali, Donato Romano, Ri-Zhao Chen\",\"doi\":\"10.1093/ee/nvae085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The maize crop is highly susceptible to damage caused by its primary pests, which poses considerable challenges in manually identifying and controlling them at various larval developmental stages. To mitigate this issue, we propose an automated classification system aimed at identifying the different larval developmental stages of 23 instars of 4 major lepidopteran pests: the Asian corn borer, Ostrinia furnacalis (Guenée; Lepidoptera: Crambidae), the fall armyworm, Spodoptera frugiperda (J.E. Smith; Lepidoptera: Noctuidae), the oriental armyworm, Mythimna separata (Walker; Lepidoptera: Noctuidae), and the tobacco cutworm, Spodoptera litura (Fabricius; Lepidoptera: Noctuidae). Employing 5 distinct Convolutional Neural Network architectures-Convnext, Densenet121, Efficientnetv2, Mobilenet, and Resnet-we aimed to automate the process of identifying these larval developmental stages. Each model underwent fine-tuning using 2 different optimizers: stochastic gradient descent with momentum and adaptive moment estimation (Adam). Among the array of models tested, Densenet121, coupled with the Adam optimizer, exhibited the highest classification accuracy, achieving an impressive 96.65%. The configuration performed well in identifying the larval development stages of all 4 pests, with precision, recall, and F1 score evaluation indicators reaching 98.71%, 98.66%, and 98.66%, respectively. Notably, the model was ultimately tested in a natural field environment, demonstrating that Adam_Densenet121 model achieved an accuracy of 90% in identifying the 23 instars of the 4 pests. The application of transfer learning methodology showcased its effectiveness in automating the identification of larval developmental stages, underscoring promising implications for precision-integrated pest management strategies in agriculture.</p>\",\"PeriodicalId\":11751,\"journal\":{\"name\":\"Environmental Entomology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Entomology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/ee/nvae085\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/ee/nvae085","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

玉米作物极易受到其主要害虫的危害,这给人工识别和控制处于不同幼虫发育阶段的害虫带来了巨大挑战。为缓解这一问题,我们提出了一种自动分类系统,旨在识别 4 种主要鳞翅目害虫 23 个蜕期的不同幼虫发育阶段:亚洲玉米螟 Ostrinia furnacalis (Guenée; 鳞翅目:Crambidae)、秋军虫 Spodoptera frugiperda (J. E. Smith; 鳞翅目:J.E. Smith;鳞翅目:夜蛾科)、东方军虫(Mythimna separata (Walker; Lepidoptera: Noctuidae))和烟草切割虫(Spodoptera litura (Fabricius; Lepidoptera: Noctuidae))。我们采用了 5 种不同的卷积神经网络架构--Convnext、Densenet121、Efficientnetv2、Mobilenet 和 Resnet,旨在实现这些幼虫发育阶段识别过程的自动化。每个模型都使用两种不同的优化器进行了微调:带动量的随机梯度下降和自适应矩估计(Adam)。在测试的一系列模型中,Densenet121 与 Adam 优化器相结合,显示出最高的分类准确率,达到了令人印象深刻的 96.65%。该配置在识别所有 4 种害虫的幼虫发育阶段方面表现出色,精确度、召回率和 F1 分数评价指标分别达到 98.71%、98.66% 和 98.66%。值得注意的是,该模型最终在自然田间环境中进行了测试,结果表明 Adam_Densenet121 模型在识别 4 种害虫的 23 个阶段方面达到了 90% 的准确率。迁移学习方法的应用展示了其在自动识别幼虫发育阶段方面的有效性,凸显了其对农业害虫精准综合管理策略的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated lepidopteran pest developmental stages classification via transfer learning framework.

The maize crop is highly susceptible to damage caused by its primary pests, which poses considerable challenges in manually identifying and controlling them at various larval developmental stages. To mitigate this issue, we propose an automated classification system aimed at identifying the different larval developmental stages of 23 instars of 4 major lepidopteran pests: the Asian corn borer, Ostrinia furnacalis (Guenée; Lepidoptera: Crambidae), the fall armyworm, Spodoptera frugiperda (J.E. Smith; Lepidoptera: Noctuidae), the oriental armyworm, Mythimna separata (Walker; Lepidoptera: Noctuidae), and the tobacco cutworm, Spodoptera litura (Fabricius; Lepidoptera: Noctuidae). Employing 5 distinct Convolutional Neural Network architectures-Convnext, Densenet121, Efficientnetv2, Mobilenet, and Resnet-we aimed to automate the process of identifying these larval developmental stages. Each model underwent fine-tuning using 2 different optimizers: stochastic gradient descent with momentum and adaptive moment estimation (Adam). Among the array of models tested, Densenet121, coupled with the Adam optimizer, exhibited the highest classification accuracy, achieving an impressive 96.65%. The configuration performed well in identifying the larval development stages of all 4 pests, with precision, recall, and F1 score evaluation indicators reaching 98.71%, 98.66%, and 98.66%, respectively. Notably, the model was ultimately tested in a natural field environment, demonstrating that Adam_Densenet121 model achieved an accuracy of 90% in identifying the 23 instars of the 4 pests. The application of transfer learning methodology showcased its effectiveness in automating the identification of larval developmental stages, underscoring promising implications for precision-integrated pest management strategies in agriculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Entomology
Environmental Entomology 生物-昆虫学
CiteScore
3.90
自引率
5.90%
发文量
97
审稿时长
3-8 weeks
期刊介绍: Environmental Entomology is published bimonthly in February, April, June, August, October, and December. The journal publishes reports on the interaction of insects with the biological, chemical, and physical aspects of their environment. In addition to research papers, Environmental Entomology publishes Reviews, interpretive articles in a Forum section, and Letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信