Environmental Progress & Sustainable Energy最新文献

筛选
英文 中文
Adsorption mechanism and electrochemical properties of disperse blue 2BLN onto magnetic Cu0.2Zn0.3Co0.5Fe2O4 nanoparticles prepared via the rapid combustion process 通过快速燃烧工艺制备的磁性 Cu0.2Zn0.3Co0.5Fe2O4 纳米粒子对分散蓝 2BLN 的吸附机理和电化学特性
IF 2.1 4区 环境科学与生态学
Environmental Progress & Sustainable Energy Pub Date : 2024-07-11 DOI: 10.1002/ep.14456
Wenjun Zhou, Zhixiang Lv, Yao Wang, Sheng Luo, Dan Zhou, Guodong Su
{"title":"Adsorption mechanism and electrochemical properties of disperse blue 2BLN onto magnetic Cu0.2Zn0.3Co0.5Fe2O4 nanoparticles prepared via the rapid combustion process","authors":"Wenjun Zhou,&nbsp;Zhixiang Lv,&nbsp;Yao Wang,&nbsp;Sheng Luo,&nbsp;Dan Zhou,&nbsp;Guodong Su","doi":"10.1002/ep.14456","DOIUrl":"10.1002/ep.14456","url":null,"abstract":"<p>Magnetic Cu<sub>0.2</sub>Zn<sub>0.3</sub>Co<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> nanoparticles were prepared by the rapid combustion method and characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), x-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The average particle size and the saturation magnetization of the nanoparticles prepared at 400°C with 25 mL absolute alcohol were about 60.9 nm and 50 emu/g. The results of the experiment displayed that the adsorption process agreed with the pseudo-second-order kinetics model (<i>R</i><sup>2</sup> &gt; 0.98) and Langmuir isotherm model (<i>R</i><sup>2</sup> = 0.9982), indicating that the adsorption of DB-2BLN onto magnetic Cu<sub>0.2</sub>Zn<sub>0.3</sub>Co<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> nanoparticles was monolayer chemisorption. Δ<i>H</i> (Δ<i>H</i> = −28.0135 kJ/mol) of the thermodynamic experiment was less than 0, indicating that the adsorption was an exothermic process. The effects of pH, initial concentration of dye, ionic strength, temperature, and adsorbent dosage on the adsorption process of DB-2BLN onto magnetic Cu<sub>0.2</sub>Zn<sub>0.3</sub>Co<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> nanoparticles and the regeneration performance of the nanoparticles were investigated. When the pH was determined to be 2 and the adsorbent dosage was 5 mg, the adsorption capacity reached the maximum. After 7 cycles, the removal rate of DB-2BLN still reached 92.6% of that for the first adsorption, showing excellent regeneration performance. Finally, the electrochemical properties of the magnetic Cu<sub>0.2</sub>Zn<sub>0.3</sub>Co<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> nanoparticles were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 5","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141609046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tungsten oxide-iodide/poly-2-aminobenzenethiol nanocomposite with iodine intercalation as a promising electrode for potentiometric sensing of Pb2+ ions in water 具有碘插层的氧化钨-碘化物/聚-2-氨基苯硫酚纳米复合材料有望成为电位法检测水中 Pb2+ 离子的电极
IF 2.1 4区 环境科学与生态学
Environmental Progress & Sustainable Energy Pub Date : 2024-07-09 DOI: 10.1002/ep.14453
Maha Abdallah Alnuwaiser, Mohamed Rabia
{"title":"Tungsten oxide-iodide/poly-2-aminobenzenethiol nanocomposite with iodine intercalation as a promising electrode for potentiometric sensing of Pb2+ ions in water","authors":"Maha Abdallah Alnuwaiser,&nbsp;Mohamed Rabia","doi":"10.1002/ep.14453","DOIUrl":"10.1002/ep.14453","url":null,"abstract":"<p>Tungsten oxide-iodide/poly-2-aminobenzenethiol nanocomposite (WO<sub>2</sub>I<sub>2</sub>/P2ABT) is created through the introduction of iodine into polymer chains, where iodine serves as an oxidizing agent during the synthesis process. With a highly porous structure, the sensing capabilities of WO<sub>2</sub>I<sub>2</sub>/P2ABT for detecting Pb<sup>2+</sup> ions are successfully demonstrated, revealing a Nernstian slope of 26.2 mV/decade. This detection is accomplished through a simple potentiometric technique, employing a simple two-electrode cell setup. To further validate its performance, cyclic voltammetry is conducted using a three-electrode system, revealing a remarkable sensitivity of 7.2 × 10<sup>−5</sup> A M<sup>−1</sup> for Pb<sup>2+</sup> ions. The nanocomposite sensor's selectivity is rigorously examined by subjecting it to testing in the presence of 0.01 M interfering ions. The results unequivocally demonstrate that the sensor remains unresponsive to these interfering ions, underscoring its remarkable selectivity for Pb<sup>2+</sup> ions. Moreover, the sensor's behavior is evaluated under real-world conditions using natural samples, where, no indications of interference from other ions are observed. This is estimated by the absence of cyclic peaks in the voltammogram, indicating the sensor's unique ability to selectively detect Pb<sup>2+</sup> ions without being perturbed by other ions that may be naturally occurring in the samples. These findings emphasize the nanocomposite sensor's potential for a wide array of applications in environmental monitoring and analytical chemistry. Its extraordinary combination of high sensitivity, impeccable selectivity, and robust performance in practical scenarios establishes it as an invaluable tool for detecting Pb<sup>2+</sup> ions across various contexts.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 5","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141588442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical investigation of combustion characteristics of extended coherent flame model 3 zones (ECFM-3Z) in diesel engines running with biodiesel 对使用生物柴油的柴油发动机中扩展相干火焰模型 3 区(ECFM-3Z)的燃烧特性进行数值研究
IF 2.1 4区 环境科学与生态学
Environmental Progress & Sustainable Energy Pub Date : 2024-07-08 DOI: 10.1002/ep.14422
Şeyma Karahan Özbilen, Emrullah Hakan Kaleli, Emir Aydar
{"title":"Numerical investigation of combustion characteristics of extended coherent flame model 3 zones (ECFM-3Z) in diesel engines running with biodiesel","authors":"Şeyma Karahan Özbilen,&nbsp;Emrullah Hakan Kaleli,&nbsp;Emir Aydar","doi":"10.1002/ep.14422","DOIUrl":"10.1002/ep.14422","url":null,"abstract":"<p>This research investigates the application of Extended Coherent Flame Model-3 Zones (ECFM-3Z) to assess the performance and emissions of rapeseed oil methyl ester (ROME). Experimental tests were carried out using a Lombardini 3 LD 350 model single-cylinder diesel engine, at 1600–3000 rpm with 200 rpm speed increments, under full load conditions. For numerical analysis, STAR-CD/ESICE software was employed. Methyl Oleate (C<sub>19</sub>H<sub>36</sub>O<sub>2</sub>) was predicted as the surrogate biodiesel based on Gas Chromatography (GC) analysis and average mass calculation. Notably, the numerical analysis revealed a remarkable similarity in brake power between the experimental and computational investigations. In the range of 2400–3000 rpm, the biodiesel's performance exhibited a maximum deviation of 5%, primarily attributed to pumping, thermal, and friction losses. In terms of emissions, carbon dioxide (CO<sub>2</sub>) emissions were consistent with the findings of the experimental study, with a maximum disparity of 10%. However, carbon monoxide (CO) emissions ranged from 57% to 65% lower than those observed in the experimental study, while nitrogen oxide (NO<sub>x</sub>) emissions exhibited a reduction of 63% to 84%. In contrast, oxygen (O<sub>2</sub>) emissions were notably higher, ranging from 93% to 117% compared to the experimental study, and exhaust temperatures were elevated by 33% to 49% in comparison to the experimental results.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 5","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141577519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbonized sawdust based solar absorber in a solar still for seawater desalination 用于海水淡化的太阳能蒸馏器中以碳化锯末为基础的太阳能吸收器
IF 2.1 4区 环境科学与生态学
Environmental Progress & Sustainable Energy Pub Date : 2024-07-07 DOI: 10.1002/ep.14449
Wong Min Jin Karen, Peter Advent Stephen, Zhipeng Wang, Bih Lii Chua, Willey Y. H. Liew, G. J. H. Melvin
{"title":"Carbonized sawdust based solar absorber in a solar still for seawater desalination","authors":"Wong Min Jin Karen,&nbsp;Peter Advent Stephen,&nbsp;Zhipeng Wang,&nbsp;Bih Lii Chua,&nbsp;Willey Y. H. Liew,&nbsp;G. J. H. Melvin","doi":"10.1002/ep.14449","DOIUrl":"10.1002/ep.14449","url":null,"abstract":"<p>Current industrial technologies for seawater desalination involve high cost and energy consumption, that is, distillation and reverse osmosis, where these technologies are difficult to implement especially in developing countries. A cost-effective, environmental-friendly, and sustainable technology is essential in providing alternative methods for generation of clean water. Solar vapor generation is one of the potential green technologies in generating clean water, where the production and collection of clean water is made possible by using a solar absorber in a solar still. The practicality and performance of the carbonized sawdust based solar absorber in a solar still for the seawater desalination towards clean water generation was conducted outdoors with gradual enhancement on the solar still setup. The enhanced solar still with reflective surface and external thermal insulator improved the solar absorber performance, in contrast to the evaporation of the bulk seawater only and using solar absorber in the solar still without any enhancement. The average efficiency and evaporation rate of the solar absorber in the enhanced solar still was recorded at 61.5% and 0.98 kg m<sup>−2</sup> h<sup>−1</sup>, respectively. The pH (7.52) and salinity (10 ppm) of the collected clean water meets the standard of safe water by the World Health Organization.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 5","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141569702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of CI engine characteristics using Jatropha-Camphor oil blends with diethyl ether as an additive 使用以二乙醚为添加剂的麻风树-樟脑混合油对 CI 发动机特性的评估
IF 2.1 4区 环境科学与生态学
Environmental Progress & Sustainable Energy Pub Date : 2024-06-30 DOI: 10.1002/ep.14414
Manikandaraja Gurusamy, Malarmannan Subramaniyan
{"title":"Evaluation of CI engine characteristics using Jatropha-Camphor oil blends with diethyl ether as an additive","authors":"Manikandaraja Gurusamy,&nbsp;Malarmannan Subramaniyan","doi":"10.1002/ep.14414","DOIUrl":"10.1002/ep.14414","url":null,"abstract":"<p>The compression-ignition properties of crude Jatropha and camphor oil blends with di ethyl ether (DEE) added is covered in this research. Six fuel samples are made based on volume: 90% C70J30 with 10% diethyl ether (C70J30 + 10% DEE), 90% C30J70 with 10% di-ethyl ether (C50J50 + 10% DEE), 70% Camphor oil with 30% crude Jatropha oil (C70J30), 50% Camphor oil with 50% crude Jatropha oil (C50J50), 30% Camphor oil with 70% crude Jatropha oil (C30750). A four-stroke, one-cylinder, naturally aspirated, compression-ignition engine operating at a constant 1500 rpm with a load range of 0%–100% with a 25% interval is used for the experiment. According to test findings, the C70J30 + 10% DEE has the lowest brake-specific energy consumption of 11.68 kJ/kWh, the maximum energy efficiency of 62.56%, and the highest thermal efficiency of 30.81%. Compared to the other biofuels examined, this puts it more in line with diesel. Additionally, blends of crude Jatropha oil and camphor oil showed at least 4.46 g/kWh of CO, 0.259 g/kWh of HC, and 74% of smoke opacity when DEE was added. However, it raises CO<sub>2</sub> to 0.792 kg/kWh and NO to 9.54 g/kWh. The greatest peak pressure and quickest heat release are produced by adding more DEE as a fuel additive and using a larger percentage of camphor oil. It also increases the coefficient of variation of the peak pressure throughout 100 cycles. All things considered, the C70J30 + 10% DEE's CI engine features are better.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 4","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141549495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ epoxidation of oleic acid with applied natural zeolite as a catalyst 应用天然沸石作为催化剂原位环氧化油酸
IF 2.1 4区 环境科学与生态学
Environmental Progress & Sustainable Energy Pub Date : 2024-06-27 DOI: 10.1002/ep.14421
Intan Suhada Azmi, Siti Aisyah Adnan, Asiah Nusaibah Masri, Silvana Dwi Nurherdiana, Siti Nadia Abdullah, Mohd Jumain Jalil
{"title":"In situ epoxidation of oleic acid with applied natural zeolite as a catalyst","authors":"Intan Suhada Azmi,&nbsp;Siti Aisyah Adnan,&nbsp;Asiah Nusaibah Masri,&nbsp;Silvana Dwi Nurherdiana,&nbsp;Siti Nadia Abdullah,&nbsp;Mohd Jumain Jalil","doi":"10.1002/ep.14421","DOIUrl":"10.1002/ep.14421","url":null,"abstract":"<p>In recent years, there has been a growing demand for environmentally friendly epoxides made from vegetable oils. Therefore, the use of materials from renewable resources, was implemented in this study with natural zeolite as a catalyst being chosen over synthetic zeolite because synthetic zeolite mostly consists of strong corrosive materials. The aims of this research to determine the effect of catalyst concentration on the relative conversion of oxirane (RCO). RCO was the highest at 30 min of the reaction for sunflower oil, being 72% at 80°C using a 0.25 g concentration of catalyst. Meanwhile, for palm oil, the highest RCO was only 52% at 80°C. Lastly, MATLAB software was used to develop a mathematical model for determination rate constant. In this model, the Runge–Kutta method of the fourth order was combined with genetic algorithm optimization to for development of kinetic model that best fitted with the experimental data.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 4","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141549496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable renewable energy supply chain with current technological adaptation: Macro energy progress policy in Iran 可持续的可再生能源供应链与当前的技术改造:伊朗的宏观能源进步政策
IF 2.1 4区 环境科学与生态学
Environmental Progress & Sustainable Energy Pub Date : 2024-06-26 DOI: 10.1002/ep.14433
Hamed Fazlollahtabar
{"title":"Sustainable renewable energy supply chain with current technological adaptation: Macro energy progress policy in Iran","authors":"Hamed Fazlollahtabar","doi":"10.1002/ep.14433","DOIUrl":"10.1002/ep.14433","url":null,"abstract":"<p>Climate change is a global challenge today that has been highly considered due to the wide impacts on different sectors of a society. That is why the use of renewable energy for countries and communities should be considered. In addition, the limitation of fossil fuels and the problems incurred by greenhouse gas emissions have made it increasingly important to make renewable energy more attractive. Sustainable energy means continuous supply of energy for today's needs without compromising the ability of future generations to meet their needs. Sustainable energy technologies include renewable energy sources such as hydroelectric power, solar energy, wind energy, geothermal energy, synthetic photo center and wave energy, as well as technologies designed to improve energy efficiency. Thus, this article discusses the development and performance of renewable supply chain energy in Iran. A strategic model is proposed and investigated to cover various aspects of sustainable renewable energy within a supply chain configuration integrated with machine learning method for quantification purpose. The novelty is on integrating machine learning and strategic plan to handle sustainability indicators within a renewable energy supply chain. The study also provides managerial insights to governments, researchers and stakeholders for the initiation of renewable energy use and suggestions for overcoming the barriers to its developments.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 5","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141549497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Process and production enhancement through codigestion in biogas generation 在沼气生产中通过联合消化提高工艺和产量
IF 2.1 4区 环境科学与生态学
Environmental Progress & Sustainable Energy Pub Date : 2024-06-17 DOI: 10.1002/ep.14442
M. Adnan Aslam Noon, Imran Shah, Javed Ahmed Khan Tipu, Muhammad Arif, Muhammad Usama Bin Saeed, Shoaib Ishaq Qzai, Muhammad Sharif, Aamer Sharif
{"title":"Process and production enhancement through codigestion in biogas generation","authors":"M. Adnan Aslam Noon,&nbsp;Imran Shah,&nbsp;Javed Ahmed Khan Tipu,&nbsp;Muhammad Arif,&nbsp;Muhammad Usama Bin Saeed,&nbsp;Shoaib Ishaq Qzai,&nbsp;Muhammad Sharif,&nbsp;Aamer Sharif","doi":"10.1002/ep.14442","DOIUrl":"https://doi.org/10.1002/ep.14442","url":null,"abstract":"<p>Pakistan is facing a major challenge in the domestic gas and energy sector, and its demand is continuously growing. It is imperative to produce more energy in the form of gaseous resources and electricity to reduce this energy crisis in the future. The current work is related to studying various factors that play a critical role in enhancing the process and production of biogas. The effect of codigestion, substrate size, temperature, pH, and catalyst addition are important parameters. Three batch processes are conducted for 21 days under mesophilic conditions, which is easier to achieve as compared with the thermophilic one. Codigestion of cow manure combined with food, poultry waste, and sewerage water showed some promising results compared with a single substrate (cow dung). This results in the production of biogas of about 120 L. The particle size is then reduced to 5 mm, which leads to an increase in the available surface area for microbial attack and hence increases and enhances further the process and production of biogas. However, the addition of 250 g of silica gel increases production by up to 17%. The better value for the pH range for this batch was found in the range of 6.5–7.8. The codigestion would help in cost-effective and more efficient waste treatment. The digestate in all the batch processes comes out enriched in nitrogen that is used as an organic fertilizer.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 5","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142275053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamic and exhaust emission studies of CI engine powered by neem oil methyl ester blends doped with nickel oxide nano additives 以掺有氧化镍纳米添加剂的楝树油甲酯混合物为动力的 CI 发动机的热力学和废气排放研究
IF 2.1 4区 环境科学与生态学
Environmental Progress & Sustainable Energy Pub Date : 2024-06-16 DOI: 10.1002/ep.14437
Campli Srinidhi, Shylesha V. Channapattana, Kiran Aithal, Raju Panchal, Sonali Dhaneshwar, Anuja Karle, Anirudha Dharmadikari, Amar Gajbhiye, Sandeep Sarnobat
{"title":"Thermodynamic and exhaust emission studies of CI engine powered by neem oil methyl ester blends doped with nickel oxide nano additives","authors":"Campli Srinidhi,&nbsp;Shylesha V. Channapattana,&nbsp;Kiran Aithal,&nbsp;Raju Panchal,&nbsp;Sonali Dhaneshwar,&nbsp;Anuja Karle,&nbsp;Anirudha Dharmadikari,&nbsp;Amar Gajbhiye,&nbsp;Sandeep Sarnobat","doi":"10.1002/ep.14437","DOIUrl":"10.1002/ep.14437","url":null,"abstract":"<p>Assessment of alternate fuel is categorized on thermophysical aspects and performance—emission derived due to its combustion. Data derived from such analysis is short as the energy expenditure to available chemical exergy of fuel is rarely studied. The study of energy derived from fuel energy gives a detailed picture of fuel efficiency and broadens the field of fuel search criteria. The current article aims to find the thermodynamic effects in terms of energy and exergy utilization of neem biodiesel blends and nickel oxide nano additive dosed neem biodiesel blends. Neem biodiesel was transesterified using standard procedures and analyzed using gas chromatography and mass spectroscopy. Later, neem biodiesel was blended with diesel in three volumetric proportions, that is, NB25, NB50, NB75, and pure Neem Oil Methyl ester was investigated as an engine fuel, and later synthesized nickel oxide nano additives of 25 mg/L was added to all the above fuels and further studied for energy, exergy utilization on a TV-1 VCR engine test rig under varying engine CR. Nickel oxide additives were manufactured using homogenous addition method and were thoroughly studied for formation and presence of constituents using XRD, FE-SEM, and EDS methods. The usage of nano additives does prove reduction in exergy destruction and entropy generation for NB25 base blend with 25 mg/L NiO leading to a reduction of 8.2% and 9.7% when compared to base blends. Also, the emission found for hydrocarbon, and carbon monoxide for all base fuel blends reduced by an average of 16.8% and 7.35%.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 5","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141335709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced optical performance of solar cell using hydrophobic SnO2/TEOS/MTMS antireflection coating 使用疏水性 SnO2/TEOS/MTMS 防反射涂层提高太阳能电池的光学性能
IF 2.1 4区 环境科学与生态学
Environmental Progress & Sustainable Energy Pub Date : 2024-06-12 DOI: 10.1002/ep.14436
N. R. Chandralekha, J. Shanthi, R. Swathi, K. K. Anoop
{"title":"Enhanced optical performance of solar cell using hydrophobic SnO2/TEOS/MTMS antireflection coating","authors":"N. R. Chandralekha,&nbsp;J. Shanthi,&nbsp;R. Swathi,&nbsp;K. K. Anoop","doi":"10.1002/ep.14436","DOIUrl":"10.1002/ep.14436","url":null,"abstract":"<p>Anti-reflection coatings have potential usage in photovoltaic solar cells, sensors, and display devices to reduce reflectance, glare and enhance light transmission. ARC was developed to increase more efficiency of solar cell cover glasses, by depositing SnO<sub>2</sub>/TEOS/MTMS coating using the sol–gel spin coating technique. The coating showed a maximum transmittance of 92.70% at 399 nm wavelength with an average refractive index of 1.42. The transmittance of the antireflective film was increased by 2.29% than the bare glass substrate. The surface morphology of the coatings was investigated using FESEM analysis. The mechanical stability of the coating was evaluated using ASTM standard D 3363–05 pencil scratch test, and it demonstrated good performance against 3H hardness pencil. The efficiency of solar cells has been increased by 1.56% after depositing with single layer SnO<sub>2</sub>/TEOS/MTMS film. Moreover, the coating maintains the solar cell's performance even during dust exposure, because of its self-cleaning ability with water contact angle of 94°. Thus, the Anti-reflection coating can be applied to enhance the efficiency of photovoltaic system.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 5","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141351355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信