Drug DeliveryPub Date : 2024-12-01Epub Date: 2023-12-26DOI: 10.1080/10717544.2023.2296350
Melbha Starlin Chellathurai, Syed Mahmood, Zarif Mohamed Sofian, Cheng Wan Hee, Ramkanth Sundarapandian, Haja Nazeer Ahamed, C S Kandasamy, Ayah R Hilles, Najihah Mohd Hashim, Ashok Kumar Janakiraman
{"title":"Biodegradable polymeric insulin microneedles - a design and materials perspective review.","authors":"Melbha Starlin Chellathurai, Syed Mahmood, Zarif Mohamed Sofian, Cheng Wan Hee, Ramkanth Sundarapandian, Haja Nazeer Ahamed, C S Kandasamy, Ayah R Hilles, Najihah Mohd Hashim, Ashok Kumar Janakiraman","doi":"10.1080/10717544.2023.2296350","DOIUrl":"10.1080/10717544.2023.2296350","url":null,"abstract":"<p><p>Microneedle (MN) delivery devices are more accepted by people than regular traditional needle injections (e.g. vaccination) due to their simplicity and adaptability. Thus, patients of chronic diseases like diabetes look for alternative pain-free treatment regimens circumventing regular subcutaneous injections. Insulin microneedles (INS-MNs) are a thoughtfully researched topic (1) to overcome needle phobia in patients, (2) for controlled delivery of the peptide, (3) decreasing the frequency of drug administration, (4) to ease the drug administration procedure, and (5) thus increasing patient adherence to the treatment dosage regimes. MNs physically disrupt the hard outer skin layer to create minuscule pores for insulin (INS) to pass through the dermal capillaries into the systemic circulation. Biodegradable polymeric MNs are of greater significance for INS and vaccine delivery than silicon, metal, glass, or non-biodegradable polymeric MNs due to their ease of fabrication, mass production, cost-effectiveness, and bioerodability. In recent years, INS-MNs have been researched to deliver INS through the transdermal implants, buccal mucosa, stomach wall, intestinal mucosal layers, and colonic mucosa apart from the usual transdermal delivery. This review focuses on the design characteristics and the applications of biodegradable/dissolvable polymeric INS-MNs in transdermal, intra-oral, gastrointestinal (GI), and implantable delivery. The prospective approaches to formulate safe, controlled-release INS-MNs were highlighted. Biodegradable/dissolvable polymers, their significance, their impact on MN morphology, and INS release characteristics were outlined. The developments in biodegradable polymeric INS-MN technology were briefly discussed. Bio-erodible polymer selection, MN fabrication and evaluation factors, and other design aspects were elaborated.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2296350"},"PeriodicalIF":6.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763835/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139039670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Drug DeliveryPub Date : 2024-12-01Epub Date: 2024-03-22DOI: 10.1080/10717544.2024.2329100
Kazuki Kotani, Francois Marie Ngako Kadji, Yoshinobu Mandai, Yosuke Hiraoka
{"title":"Backflow reduction in local injection therapy with gelatin formulations.","authors":"Kazuki Kotani, Francois Marie Ngako Kadji, Yoshinobu Mandai, Yosuke Hiraoka","doi":"10.1080/10717544.2024.2329100","DOIUrl":"10.1080/10717544.2024.2329100","url":null,"abstract":"<p><p>The local injection of therapeutic drugs, including cells, oncolytic viruses and nucleic acids, into different organs is an administrative route used to achieve high drug exposure at the site of action. However, after local injection, material backflow and side effect reactions can occur. Hence, this study was carried out to investigate the effect of gelatin on backflow reduction in local injection. Gelatin particles (GPs) and hydrolyzed gelatin (HG) were injected into tissue models, including versatile training tissue (VTT), versatile training tissue tumor-in type (VTT-T), and broiler chicken muscles (BCM), using needle gauges between 23 G and 33 G. The backflow material fluid was collected with filter paper, and the backflow fluid rate was determined. The backflow rate was significantly reduced with 35 μm GPs (<i>p</i> value < .0001) at different concentrations up to 5% and with 75 μm GPs (<i>p</i> value < .01) up to 2% in the tissue models. The reduction in backflow with HG of different molecular weights showed that lower-molecular-weight HG required a higher-concentration dose (5% to 30%) and that higher-molecular-weight HG required a lower-concentration dose (7% to 8%). The backflow rate was significantly reduced with the gelatin-based formulation, in regard to the injection volumes, which varied from 10 μL to 100 μL with VTT or VTT-T and from 10 μL to 200 μL with BCM. The 35 μm GPs were injectable with needles of small gauges, which included 33 G, and the 75 μm GPs and HG were injectable with 27 G needles. The backflow rate was dependent on an optimal viscosity of the gelatin solutions. An optimal concentration of GPs or HG can prevent material backflow in local injection, and further studies with active drugs are necessary to investigate the applicability in tumor and organ injections.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2329100"},"PeriodicalIF":6.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10962293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140184061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Drug DeliveryPub Date : 2024-12-01Epub Date: 2024-02-29DOI: 10.1080/10717544.2024.2305818
Anna Szabó, Ignace De Decker, Sam Semey, Karel E Y Claes, Phillip Blondeel, Stan Monstrey, Jo Van Dorpe, Sandra Van Vlierberghe
{"title":"Photo-crosslinkable polyester microneedles as sustained drug release systems toward hypertrophic scar treatment.","authors":"Anna Szabó, Ignace De Decker, Sam Semey, Karel E Y Claes, Phillip Blondeel, Stan Monstrey, Jo Van Dorpe, Sandra Van Vlierberghe","doi":"10.1080/10717544.2024.2305818","DOIUrl":"10.1080/10717544.2024.2305818","url":null,"abstract":"<p><p>Burn injuries can result in a significant inflammatory response, often leading to hypertrophic scarring (HTS). Local drug therapies e.g. corticoid injections are advised to treat HTS, although they are invasive, operator-dependent, extremely painful and do not permit extended drug release. Polymer-based microneedle (MN) arrays can offer a viable alternative to standard care, while allowing for direct, painless dermal drug delivery with tailorable drug release profile. In the current study, we synthesized photo-crosslinkable, acrylate-endcapped urethane-based poly(<i>ε</i>-caprolactone) (AUP-PCL) toward the fabrication of MNs. Physico-chemical characterization (<sup>1</sup>H-NMR, evaluation of swelling, gel fraction) of the developed polymer was performed and confirmed successful acrylation of PCL-diol. Subsequently, AUP-PCL, and commercially available PCL-based microneedle arrays were fabricated for comparative evaluation of the constructs. Hydrocortisone was chosen as model drug. To enhance the drug release efficiency of the MNs, Brij®35, a nonionic surfactant was exploited. The thermal properties of the MNs were evaluated via differential scanning calorimetry. Compression testing of the arrays confirmed that the MNs stay intact upon applying a load of 7 N, which correlates to the standard dermal insertion force of MNs. The drug release profile of the arrays was evaluated, suggesting that the developed PCL arrays can offer efficient drug delivery for up to two days, while the AUP-PCL arrays can provide a release up to three weeks. Finally, the insertion of MN arrays into skin samples was performed, followed by histological analysis demonstrating the AUP-PCL MNs outperforming the PCL arrays upon providing pyramidical-shaped perforations through the epidermal layer of the skin.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2305818"},"PeriodicalIF":6.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956933/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Drug DeliveryPub Date : 2024-12-01Epub Date: 2024-03-31DOI: 10.1080/10717544.2024.2324716
Hui Ao, Huizhu Song, Jing Li, Xiangtao Wang
{"title":"Enhanced anti-glioma activity of annonaceous acetogenins based on a novel liposomal co-delivery system with ginsenoside Rh2.","authors":"Hui Ao, Huizhu Song, Jing Li, Xiangtao Wang","doi":"10.1080/10717544.2024.2324716","DOIUrl":"10.1080/10717544.2024.2324716","url":null,"abstract":"<p><p>Annonaceous acetogenins (ACGs) have potent anti-tumor activity, and the problems of their low solubility, hemolysis, and <i>in vivo</i> delivery have been solved by encapsulation into nanoparticles. However, the high toxicity still limits their application in clinic. In this paper, the co-delivery strategy was tried to enhance the <i>in vivo</i> anti-tumor efficacy and reduce the toxic effects of ACGs. Ginsenoside Rh2, a naturally derived biologically active compound, which was reported to have synergistic effect with paclitaxel, was selected to co-deliver with ACGs. And due to its similarity with cholesterol in chemical structure, the co-loading liposomes, (ACGs + Rh2)-Lipo, were successfully constructed using Rh2 instead of cholesterol as the membrane material. The obtained (ACGs + Rh2)-Lipo and ACGs-Lipo had similar mean particle size (about 80 nm), similar encapsulation efficiency (EE, about 97%) and good stability. The MTS assay indicated that (ACGs + Rh2)-Lipo had stronger toxicity <i>in vitro</i>. In the <i>in vivo</i> study, in contrast to ACGs-Lipo, (ACGs + Rh2)-Lipo demonstrated an improved tumor targetability (3.3-fold in relative tumor targeting index) and significantly enhanced the antitumor efficacy (tumor inhibition rate, 72.9 ± 5.4% vs. 60.5 ± 5.4%, <i>p</i> < .05). The body weight change, liver index, and spleen index of tumor-bearing mice showed that Rh2 can attenuate the side effects of ACGs themselves. In conclusion, (ACGs + Rh2)-Lipo not only alleviated the toxicity of ACGs to the organism, but also enhanced their anti-tumor activity, which is expected to break through their bottleneck.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2324716"},"PeriodicalIF":6.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984232/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140331621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Drug DeliveryPub Date : 2024-12-01Epub Date: 2024-07-23DOI: 10.1080/10717544.2024.2381340
Aura Rocío Hernández, Ekaterina Bogdanova, Jesus E Campos Pacheco, Vitaly Kocherbitov, Mikael Ekström, Georgia Pilkington, Sabrina Valetti
{"title":"Disordered mesoporous silica particles: an emerging platform to deliver proteins to the lungs.","authors":"Aura Rocío Hernández, Ekaterina Bogdanova, Jesus E Campos Pacheco, Vitaly Kocherbitov, Mikael Ekström, Georgia Pilkington, Sabrina Valetti","doi":"10.1080/10717544.2024.2381340","DOIUrl":"10.1080/10717544.2024.2381340","url":null,"abstract":"<p><p>Pulmonary delivery and formulation of biologics are among the more complex and growing scientific topics in drug delivery. We herein developed a dry powder formulation using disordered mesoporous silica particles (MSP) as the sole excipient and lysozyme, the most abundant antimicrobial proteins in the airways, as model protein. The MSP had the optimal size for lung deposition (2.43 ± 0.13 µm). A maximum lysozyme loading capacity (0.35 mg/mg) was achieved in 150 mM PBS, which was seven times greater than that in water. After washing and freeze-drying, we obtained a dry powder consisting of spherical, non-aggregated particles, free from residual buffer, or unabsorbed lysozyme. The presence of lysozyme was confirmed by TGA and FT-IR, while N<sub>2</sub> adsorption/desorption and SAXS analysis indicate that the protein is confined within the internal mesoporous structure. The dry powder exhibited excellent aerodynamic performance (fine particle fraction <5 µm of 70.32%). Lysozyme was released in simulated lung fluid in a sustained kinetics and maintaining high enzymatic activity (71-91%), whereas LYS-MSP were shown to degrade into aggregated nanoparticulate microstructures, reaching almost complete dissolution (93%) within 24 h. MSPs were nontoxic to <i>in vitro</i> lung epithelium. The study demonstrates disordered MSP as viable carriers to successfully deliver protein to the lungs, with high deposition and retained activity.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2381340"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268259/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Drug DeliveryPub Date : 2024-12-01Epub Date: 2024-07-23DOI: 10.1080/10717544.2024.2380538
Ming Jia, Wei Ren, Minrui Wang, Yan Liu, Chenglong Wang, Zongquan Zhang, Maochang Xu, Nianhui Ding, Chunhong Li, Hong Yang
{"title":"Surface saturation of drug-loaded hollow manganese dioxide nanoparticles with human serum albumin for treating rheumatoid arthritis.","authors":"Ming Jia, Wei Ren, Minrui Wang, Yan Liu, Chenglong Wang, Zongquan Zhang, Maochang Xu, Nianhui Ding, Chunhong Li, Hong Yang","doi":"10.1080/10717544.2024.2380538","DOIUrl":"10.1080/10717544.2024.2380538","url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a chronic inflammatory joint disease accompanied by energy depletion and accumulation of reactive oxygen species (ROS). Inorganic nanoparticles (NPs) offer great promise for the treatment of RA because they mostly have functions beyond being drug carriers. However, conventional nanomaterials become coated with a protein corona (PC) or lose their cargo prematurely <i>in vivo</i>, reducing their therapeutic efficacy. To avoid these problems, we loaded methotrexate (MTX) into hollow structured manganese dioxide nanoparticles (H-MnO<sub>2</sub> NPs), then coated them with a 'pseudo-corona' of human serum albumin (HSA) at physiological concentrations to obtain HSA-MnO<sub>2</sub>@MTX NPs. Efficacy of MTX, MnO<sub>2</sub>@MTX, and HSA-MnO<sub>2</sub>@MTX NPs was compared <i>in vitro</i> and <i>in vivo</i>. Compared to MnO<sub>2</sub>@MTX, HSA-coated NPs were taken up better by lipopolysaccharide-activated RAW264.7 and were more effective at lowering levels of pro-inflammatory cytokines and preventing ROS accumulation. HSA-MnO<sub>2</sub>@MTX NPs were also more efficient at blocking the proliferation and migration of fibroblast-like synoviocytes from rats with collagen-induced arthritis. In this rat model, HSA-MnO<sub>2</sub>@MTX NPs showed better biodistribution than other treatments, specifically targeting the ankle joint. Furthermore, HSA-MnO<sub>2</sub>@MTX NPs reduced swelling in the paw, regulated pro-inflammatory cytokine production, and limited cartilage degradation and signs of inflammation. These results establish the therapeutic potential of HSA-MnO<sub>2</sub>@MTX NPs against RA.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2380538"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271085/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent advances of injectable in situ-forming hydrogels for preventing postoperative tumor recurrence.","authors":"Zhanpeng Wang,Bingtao Zhai,Jing Sun,Xiaofei Zhang,Junbo Zou,Yajun Shi,Dongyan Guo","doi":"10.1080/10717544.2024.2400476","DOIUrl":"https://doi.org/10.1080/10717544.2024.2400476","url":null,"abstract":"The unavoidable residual tumor tissue from surgery and the strong aggressiveness of tumor cells pose challenges to the postoperative treatment of tumor patients, accompanied by in situ tumor recurrence and decreased quality of life. Therefore, there is an urgent need to explore appropriate postoperative therapeutic strategies to remove residual tumor cells after surgery to inhibit tumor recurrence and metastasis after surgery. In recent years, with the rapid development of biomedical materials, the study of local delivery systems as postoperative delivery of therapeutic agents has gradually attracted the attention of researchers. Injectable in situ-forming hydrogel is a locally administered agent injected in situ as a solution that can be loaded with various therapeutic agents and rapidly gels to form a semi-solid gel at the treatment site. This type of hydrogel tightly fills the surgical site and covers irregular excision surfaces. In this paper, we review the recent advances in the application of injectable in situ-forming hydrogels in postoperative therapy, focusing on the matrix materials of this type of hydrogel and its application in the postoperative treatment of different types of tumors, as well as discussing the challenges and prospects of its clinical application.","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"5 1","pages":"2400476"},"PeriodicalIF":6.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Drug DeliveryPub Date : 2024-04-08DOI: 10.1080/10717544.2024.2337423
Shimul Halder, Sanjida Afrose, Manik Chandra Shill, Nahid Sharmin, Patricia Prova Mollick, Madhabi Lata Shuma, Md. Abdul Muhit, S. M. Abdur Rahman
{"title":"Self-micellizing solid dispersion of thymoquinone with enhanced biopharmaceutical and nephroprotective effects","authors":"Shimul Halder, Sanjida Afrose, Manik Chandra Shill, Nahid Sharmin, Patricia Prova Mollick, Madhabi Lata Shuma, Md. Abdul Muhit, S. M. Abdur Rahman","doi":"10.1080/10717544.2024.2337423","DOIUrl":"https://doi.org/10.1080/10717544.2024.2337423","url":null,"abstract":"The present study was designed to develop a self-micellizing solid dispersion (SMSD) containing Thymoquinone (TQM), a phytonutrient obtained from Nigella sativa seeds, aiming to improve its biophar...","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"1 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140568726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}