{"title":"Transfersomal delivery of <i>Centella asiatica</i> promotes efficient excision wound healing in rats.","authors":"Sarawut Lapmanee, Phichaporn Bunwatcharaphansakun, Waleewan Phongsupa, Katawut Namdee, Khomson Suttisintong, Udom Asawapirom, Uracha Ruktanonchai, Prapimpun Wongchitrat, Sakkarin Bhubhanil, Phornphimon Maitarad, Mattaka Khongkow","doi":"10.1080/10717544.2025.2563649","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents the development and evaluation of <i>Centella Asiatica</i> (CA)-loaded transfersomes (CANP) as a novel nanocarrier for transdermal delivery. CANP were prepared using an oil-in-water emulsion method, producing nanoparticles with a size of 135.22 ± 4.80 nm, a polydispersity index of 0.22 ± 0.01, and a zeta potential of -26.13 ± 0.58 mV. Stability tests confirmed consistent physicochemical properties under various storage conditions, with encapsulation efficiencies above 68% for madecassoside and 89% for asiaticoside. <i>Ex vivo</i> permeation studies using porcine skin showed significantly improved skin penetration compared to liposomes and niosomes, attributed to the high deformability index (1.31 ± 0.21 mg/cm<sup>2</sup>). <i>In vitro</i> cytotoxicity assays indicated cell viability above 80% across concentrations. Functionally, CANP reduced nitric oxide production in LPS-stimulated RAW 264.7 cells, demonstrating superior anti-inflammatory effects over native CA. CANP also promoted fibroblast proliferation and collagen production by 91.9% and 213.3% at days 7 and 14, respectively, exceeding vitamin C. Wound healing assays confirmed enhanced fibroblast migration and closure rates similar to fibroblast growth factor. <i>In vivo</i>, CANP hydrogels accelerated healing, with early fibroblast activity and collagen deposition between days 7-14, supporting epithelial regeneration over 21 days. Compared to controls, they more effectively reduced inflammation and increased dermal growth factor expression. These findings support CANP as a promising transdermal nanocarrier with enhanced skin penetration, anti-inflammatory activity, and regenerative potential. Encapsulating CA into transfersomes boosts its therapeutic efficacy, making it a strong candidate for advanced dermal applications.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"32 1","pages":"2563649"},"PeriodicalIF":8.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486451/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2025.2563649","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the development and evaluation of Centella Asiatica (CA)-loaded transfersomes (CANP) as a novel nanocarrier for transdermal delivery. CANP were prepared using an oil-in-water emulsion method, producing nanoparticles with a size of 135.22 ± 4.80 nm, a polydispersity index of 0.22 ± 0.01, and a zeta potential of -26.13 ± 0.58 mV. Stability tests confirmed consistent physicochemical properties under various storage conditions, with encapsulation efficiencies above 68% for madecassoside and 89% for asiaticoside. Ex vivo permeation studies using porcine skin showed significantly improved skin penetration compared to liposomes and niosomes, attributed to the high deformability index (1.31 ± 0.21 mg/cm2). In vitro cytotoxicity assays indicated cell viability above 80% across concentrations. Functionally, CANP reduced nitric oxide production in LPS-stimulated RAW 264.7 cells, demonstrating superior anti-inflammatory effects over native CA. CANP also promoted fibroblast proliferation and collagen production by 91.9% and 213.3% at days 7 and 14, respectively, exceeding vitamin C. Wound healing assays confirmed enhanced fibroblast migration and closure rates similar to fibroblast growth factor. In vivo, CANP hydrogels accelerated healing, with early fibroblast activity and collagen deposition between days 7-14, supporting epithelial regeneration over 21 days. Compared to controls, they more effectively reduced inflammation and increased dermal growth factor expression. These findings support CANP as a promising transdermal nanocarrier with enhanced skin penetration, anti-inflammatory activity, and regenerative potential. Encapsulating CA into transfersomes boosts its therapeutic efficacy, making it a strong candidate for advanced dermal applications.
期刊介绍:
Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.