Drug retention after intradiscal administration.

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Drug Delivery Pub Date : 2024-12-01 Epub Date: 2024-10-20 DOI:10.1080/10717544.2024.2415579
Imke Rudnik-Jansen, Jie Du, Nina Karssemakers-Degen, Anna R Tellegen, Parvesh Wadhwani, Daniele Zuncheddu, Björn P Meij, Jens Thies, Pieter Emans, Fetullah C Öner, George Mihov, Joao Pedro Garcia, Anne S Ulrich, Sibylle Grad, Marianna A Tryfonidou, Hugo van Ingen, Laura B Creemers
{"title":"Drug retention after intradiscal administration.","authors":"Imke Rudnik-Jansen, Jie Du, Nina Karssemakers-Degen, Anna R Tellegen, Parvesh Wadhwani, Daniele Zuncheddu, Björn P Meij, Jens Thies, Pieter Emans, Fetullah C Öner, George Mihov, Joao Pedro Garcia, Anne S Ulrich, Sibylle Grad, Marianna A Tryfonidou, Hugo van Ingen, Laura B Creemers","doi":"10.1080/10717544.2024.2415579","DOIUrl":null,"url":null,"abstract":"<p><p>Intradiscal drug delivery is a promising strategy for treating intervertebral disk degeneration (IVDD). Local degenerative processes and intrinsically low fluid exchange are likely to influence drug retention. Understanding their connection will enable the optimization of IVDD therapeutics. Release and retention of an inactive hydrophilic fluorine-19 labeled peptide (<sup>19</sup>F-P) as model for regenerative peptides was studied in a whole IVD culture model by measuring the <sup>19</sup>F-NMR (nuclear magnetic resonance) signal in culture media and IVD tissue extracts. In another set-up, noninvasive near-infrared imaging was used to visualize IR-780, as hydrophobic small molecular drug model, retention upon injection into healthy and degenerative caudal IVDs in a rat model of disk degeneration. Furthermore, IR-780-loaded degradable polyester amide microspheres (PEAM) were injected into healthy and needle pricked degenerative IVDs, subcutaneously, and in knee joints with and without surgically-induced osteoarthritis (OA). Most <sup>19</sup>F-P was released from the IVD after 7 days. IR-780 signal intensity declined over a 14-week period after bolus injection, without a difference between healthy and degenerative disks. IR-780 signal declined faster in the skin and knee joints compared to the IVDs. IR-780 delivery by PEAMs enhanced disk retention beyond 16 weeks. Moreover, in degenerated IVDs the IR-780 signal was higher over time than in healthy IVDs while no difference between OA and healthy joints was noted. We conclude that the clearance of peptides and hydrophobic small molecules from the IVD is relatively fast. These results illustrate that development of controlled release formulations should take into account the target anatomical location and local (patho)biology.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2415579"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492387/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2024.2415579","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Intradiscal drug delivery is a promising strategy for treating intervertebral disk degeneration (IVDD). Local degenerative processes and intrinsically low fluid exchange are likely to influence drug retention. Understanding their connection will enable the optimization of IVDD therapeutics. Release and retention of an inactive hydrophilic fluorine-19 labeled peptide (19F-P) as model for regenerative peptides was studied in a whole IVD culture model by measuring the 19F-NMR (nuclear magnetic resonance) signal in culture media and IVD tissue extracts. In another set-up, noninvasive near-infrared imaging was used to visualize IR-780, as hydrophobic small molecular drug model, retention upon injection into healthy and degenerative caudal IVDs in a rat model of disk degeneration. Furthermore, IR-780-loaded degradable polyester amide microspheres (PEAM) were injected into healthy and needle pricked degenerative IVDs, subcutaneously, and in knee joints with and without surgically-induced osteoarthritis (OA). Most 19F-P was released from the IVD after 7 days. IR-780 signal intensity declined over a 14-week period after bolus injection, without a difference between healthy and degenerative disks. IR-780 signal declined faster in the skin and knee joints compared to the IVDs. IR-780 delivery by PEAMs enhanced disk retention beyond 16 weeks. Moreover, in degenerated IVDs the IR-780 signal was higher over time than in healthy IVDs while no difference between OA and healthy joints was noted. We conclude that the clearance of peptides and hydrophobic small molecules from the IVD is relatively fast. These results illustrate that development of controlled release formulations should take into account the target anatomical location and local (patho)biology.

椎管内给药后的药物滞留
椎间盘内给药是治疗椎间盘退行性病变(IVDD)的一种很有前景的策略。局部退变过程和固有的低液体交换可能会影响药物的保留。了解它们之间的联系将有助于优化 IVDD 治疗方法。通过测量培养基和 IVD 组织提取物中的 19F-NMR(核磁共振)信号,研究了作为再生肽模型的非活性亲水性氟-19 标记肽(19F-P)在整个 IVD 培养模型中的释放和保留情况。在另一个装置中,使用无创近红外成像技术观察了在大鼠椎间盘退变模型中将 IR-780 作为疏水性小分子药物模型注入健康和退变尾椎 IVD 后的滞留情况。此外,IR-780负载的可降解聚酯酰胺微球(PEAM)被注射到健康的和针刺的退行性IVD中,皮下注射到有和没有手术诱发骨关节炎(OA)的膝关节中。大多数 19F-P 在 7 天后从 IVD 中释放出来。栓剂注射后,IR-780 信号强度在 14 周内下降,健康椎间盘和退行性椎间盘之间没有差异。与 IVD 相比,皮肤和膝关节中的 IR-780 信号下降更快。PEAMs递送的IR-780增强了椎间盘16周后的保持力。此外,在退化的 IVD 中,IR-780 信号随着时间的推移比在健康的 IVD 中更高,而在 OA 和健康关节中则没有发现差异。我们的结论是,肽和疏水性小分子在 IVD 中的清除速度相对较快。这些结果说明,开发控释制剂时应考虑目标解剖位置和局部(病理)生物学因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Delivery
Drug Delivery 医学-药学
CiteScore
11.80
自引率
5.00%
发文量
250
审稿时长
3.3 months
期刊介绍: Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信