Engineering in Life Sciences最新文献

筛选
英文 中文
Biological recovery of phosphorus (BioP-Rec) from wastewater streams using brewer's yeast on pilot-scale 利用酿酒酵母在中试规模上从废水中进行生物磷回收(BioP-Rec)
IF 2.7 4区 生物学
Engineering in Life Sciences Pub Date : 2023-12-08 DOI: 10.1002/elsc.202300208
Vedran Vučić, Hauke Harms, Susann Müller
{"title":"Biological recovery of phosphorus (BioP-Rec) from wastewater streams using brewer's yeast on pilot-scale","authors":"Vedran Vučić,&nbsp;Hauke Harms,&nbsp;Susann Müller","doi":"10.1002/elsc.202300208","DOIUrl":"10.1002/elsc.202300208","url":null,"abstract":"<p>Most recent advances for phosphorus (P) recovery using brewery yeast on laboratory scale were used to scale up to a pilot-scale process (BioP-Rec module) and applied in a full-scale wastewater treatment plant (WWTP). A P balance was established for WWTP Markranstädt according to two thresholds: (1) the economic feasibility threshold for P recovery of 0.05 kg/m<sup>3</sup> of free P, and (2) the German Sewage Sludge Ordinance (GSSO) threshold, which demands that all WWTPs with a P content in dry matter (DM) of biosolids of 20 gP/kg<sub>DM</sub> or higher in the coming years must perform mandatory P recovery. In terms of defined thresholds, return and excess sludges were identified as the most feasible WWTP process streams for P recovery. In a 1 m<sup>3</sup> BioP-Rec module a 3 stage process was established. From the P-rich water-phase of the return sludge produced in stage 1, which contained 0.051 kg/m<sup>3</sup> of free P, 77.56% was taken up by P-depleted brewer's yeast <i>Saccharomyces pastorianus</i> in 3 h in stage 2. In stage 3, the yeast was concentrated in 1 h to produce yeast sludge as a fertilizer product. We demonstrated a novel pilot-scale process for the production of bio-based P-rich fertilizer.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300208","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138563763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developing a surface acoustic wave-induced microfluidic cell lysis device for point-of-care DNA amplification 研制一种用于即时DNA扩增的表面声波诱导微流体细胞裂解装置
IF 2.7 4区 生物学
Engineering in Life Sciences Pub Date : 2023-12-06 DOI: 10.1002/elsc.202300230
Abbas Ali Husseini, Ali Mohammad Yazdani, Fatemeh Ghadiri, Alper Şişman
{"title":"Developing a surface acoustic wave-induced microfluidic cell lysis device for point-of-care DNA amplification","authors":"Abbas Ali Husseini,&nbsp;Ali Mohammad Yazdani,&nbsp;Fatemeh Ghadiri,&nbsp;Alper Şişman","doi":"10.1002/elsc.202300230","DOIUrl":"10.1002/elsc.202300230","url":null,"abstract":"<p>We developed a microchip device using surface acoustic waves (SAW) and sharp-edge glass microparticles to rapidly lyse low-level cell samples. This microchip features a 13-finger pair interdigital transducer (IDT) with a 30-degree focused angle, creating high-intensity acoustic beams converging 6 mm away at a 16 MHz frequency. Cell lysis is achieved through centrifugal forces acting on <i>Candida albicans</i> cells and glass particles within the focal area. To optimize this SAW-induced streaming, we conducted 42 pilot experiments, varying electrical power, droplet volume, glass particle size, concentration, and lysis time, resulting in optimal conditions: an electrical signal of 2.5 W, a 20 μL sample volume, glass particle size below 10 μm, concentration of 0.2 μg, and a 5-min lysis period. We successfully amplified DNA target fragments directly from the lysate, demonstrating an efficient microchip-based cell lysis method. When combined with an isothermal amplification technique, this technology holds promise for rapid point-of-care (POC) applications.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300230","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138507825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cultivated meat manufacturing: Technology, trends, and challenges 人造肉制造:技术、趋势和挑战
IF 2.7 4区 生物学
Engineering in Life Sciences Pub Date : 2023-11-20 DOI: 10.1002/elsc.202300227
Marline Kirsch, Jordi Morales-Dalmau, Antonina Lavrentieva
{"title":"Cultivated meat manufacturing: Technology, trends, and challenges","authors":"Marline Kirsch,&nbsp;Jordi Morales-Dalmau,&nbsp;Antonina Lavrentieva","doi":"10.1002/elsc.202300227","DOIUrl":"10.1002/elsc.202300227","url":null,"abstract":"<p>The growing world population, public awareness of animal welfare, environmental impacts and changes in meat consumption leads to the search for novel approaches to food production. Novel foods include products with a new or specifically modified molecular structure, foods made from microorganisms, fungi, algae or insects, as well as from animal cell or tissue cultures. The latter approach is known by various names: “clean meat”, “in vitro meat” and “cell-cultured” or “(cell-)cultivated meat”. Here, cells isolated from agronomically important species are expanded ex vivo to produce cell biomass used in unstructured meat or to grow and differentiate cells on scaffolds to produce structured meat analogues. Despite the fast-growing field and high financial interest from investors and governments, cultivated meat production still faces challenges ranging from cell source choice, affordable expansion, use of cruelty-free and food-grade media, regulatory issues and consumer acceptance. This overview discusses the above challenges and possible solutions and strategies in the production of cultivated meat. The review integrates multifaceted historical, social, and technological insights of the field, and provides both an engaging comprehensive introduction for general interested and a robust perspective for experts.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 12","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300227","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138507832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbiome dynamics and products profiles of biowaste fermentation under different organic loads and additives 不同有机负荷和添加剂条件下生物垃圾发酵的微生物组动态和产物概况
IF 2.7 4区 生物学
Engineering in Life Sciences Pub Date : 2023-11-13 DOI: 10.1002/elsc.202300216
Xinyu Zhu, Ping Li, Feng Ju
{"title":"Microbiome dynamics and products profiles of biowaste fermentation under different organic loads and additives","authors":"Xinyu Zhu,&nbsp;Ping Li,&nbsp;Feng Ju","doi":"10.1002/elsc.202300216","DOIUrl":"10.1002/elsc.202300216","url":null,"abstract":"<p>Biowaste fermentation is a promising technology for low-carbon print bioenergy and biochemical production. Although it is believed that the microbiome determines both the fermentation efficiency and the product profiles of biowastes, the explicit mechanisms of how microbial activity controls fermentation processes remained to be unexplored. The current study investigated the microbiome dynamics and fermentation product profiles of biowaste fermentation under different organic loads (5, 20, and 40 g-VS/L) and with additives that potentially modulate the fermentation process via methanogenesis inhibition (2-bromoethanesulfonate) or electron transfer promotion (i.e., reduced iron, magnetite iron, and activated carbon). The overall fermentation products yields were 440, 373 and 208 CH<sub>4</sub>-eq/g-VS for low-, medium- and high-load fermentation. For low- and medium-load fermentation, volatile fatty acids (VFAs) were first accumulated and were gradually converted to methane. For high-load fermentation, VFAs were the main fermentation products during the entire fermentation period, accounting for 62% of all products. 16S rRNA-based analyses showed that both 2-bromoethanesulfonate addition and increase of organic loads inhibited the activity of methanogens and promoted the activity of distinct VFA-producing bacterial microbiomes. Moreover, the addition of activated carbon promoted the activity of H<sub>2</sub>-producing <i>Bacteroides</i>, homoacetogenic <i>Eubacteriaceae</i> and methanogenic <i>Methanosarcinaceae</i>, whose activity dynamics during the fermentation led to changes in acetate and methane production. The current results unveiled mechanisms of microbiome activity dynamics shaping the biowaste fermentation product profiles and provided the fundamental basis for the development of microbiome-guided engineering approaches to modulate biowaste fermentation toward high-value product recovery.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300216","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136351820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flavonoids, gut microbiota, and host lipid metabolism 类黄酮、肠道微生物群和宿主脂质代谢
IF 2.7 4区 生物学
Engineering in Life Sciences Pub Date : 2023-11-13 DOI: 10.1002/elsc.202300065
Miao Zhou, Jie Ma, Meng Kang, Wenjie Tang, Siting Xia, Jie Yin, Yulong Yin
{"title":"Flavonoids, gut microbiota, and host lipid metabolism","authors":"Miao Zhou,&nbsp;Jie Ma,&nbsp;Meng Kang,&nbsp;Wenjie Tang,&nbsp;Siting Xia,&nbsp;Jie Yin,&nbsp;Yulong Yin","doi":"10.1002/elsc.202300065","DOIUrl":"10.1002/elsc.202300065","url":null,"abstract":"<p>Flavonoids are widely distributed in nature and have a variety of beneficial biological effects, including antioxidant, anti-inflammatory, and anti-obesity effects. All of these are related to gut microbiota, and flavonoids also serve as a bridge between the host and gut microbiota. Flavonoids are commonly used to modify the composition of the gut microbiota by promoting or inhibiting specific microbial species within the gut, as well as modifying their metabolites. In turn, the gut microbiota extensively metabolizes flavonoids. Hence, this reciprocal relationship between flavonoids and the gut microbiota may play a crucial role in maintaining the balance and functionality of the metabolism system. In this review, we mainly highlighted the biological effects of antioxidant, anti-inflammatory and antiobesity, and discussed the interaction between flavonoids, gut microbiota and lipid metabolism, and elaborated the potential mechanisms on host lipid metabolism.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300065","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136352108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: Engineering in Life Sciences 11'23 封面图片:Engineering in Life Sciences 11'23
IF 2.7 4区 生物学
Engineering in Life Sciences Pub Date : 2023-11-08 DOI: 10.1002/elsc.202370111
{"title":"Cover Picture: Engineering in Life Sciences 11'23","authors":"","doi":"10.1002/elsc.202370111","DOIUrl":"https://doi.org/10.1002/elsc.202370111","url":null,"abstract":"","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 11","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202370111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109231180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endospore production of Bacillus spp. for industrial use 工业用芽孢杆菌的孢子内生产
IF 2.7 4区 生物学
Engineering in Life Sciences Pub Date : 2023-10-12 DOI: 10.1002/elsc.202300013
Riekje Biermann, Sascha Beutel
{"title":"Endospore production of Bacillus spp. for industrial use","authors":"Riekje Biermann,&nbsp;Sascha Beutel","doi":"10.1002/elsc.202300013","DOIUrl":"https://doi.org/10.1002/elsc.202300013","url":null,"abstract":"<p>The increased occurrence of antibiotic resistance and the harmful use of pesticides are a major problem of modern times. A ban on the use of antibiotics as growth promoters in animal breeding has put a focus on the probiotics market. Probiotic food supplements are versatile and show promising results in animal and human nutrition. Chemical pesticides can be substituted by biopesticides, which are very effective against various pests in plants due to increased research. What these fields have in common is the use of spore-forming bacteria. The endospore-forming <i>Bacillus</i> spp. belonging to this group offer an effective solution to the aforementioned problems. Therefore, the biotechnological production of sufficient qualities of such endospores has become an innovative and financially viable field of research. In this review, the production of different <i>Bacillus</i> spp. endospores will be reviewed. For this purpose, the media compositions, cultivation conditions and bioprocess optimization methods of the last 20 years are presented and reflected.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 11","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109168046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut microbiota and childhood malnutrition: Understanding the link and exploring therapeutic interventions 肠道微生物群与儿童营养不良:了解联系并探索治疗干预措施
IF 2.7 4区 生物学
Engineering in Life Sciences Pub Date : 2023-10-05 DOI: 10.1002/elsc.202300070
Sevda Zoghi, Fatemah Sadeghpour Heravi, Zeinab Nikniaz, Masoud Shirmohamadi, Seyed Yaghoub Moaddab, Hamed Ebrahimzadeh Leylabadlo
{"title":"Gut microbiota and childhood malnutrition: Understanding the link and exploring therapeutic interventions","authors":"Sevda Zoghi,&nbsp;Fatemah Sadeghpour Heravi,&nbsp;Zeinab Nikniaz,&nbsp;Masoud Shirmohamadi,&nbsp;Seyed Yaghoub Moaddab,&nbsp;Hamed Ebrahimzadeh Leylabadlo","doi":"10.1002/elsc.202300070","DOIUrl":"10.1002/elsc.202300070","url":null,"abstract":"<p>Childhood malnutrition is a metabolic condition that affects the physical and mental well-being of children and leads to resultant disorders in maturity. The development of childhood malnutrition is influenced by a number of physiological and environmental factors including metabolic stress, infections, diet, genetic variables, and gut microbiota. The imbalanced gut microbiota is one of the main environmental risk factors that significantly influence host physiology and childhood malnutrition progression. In this review, we have evaluated the gut microbiota association with undernutrition and overnutrition in children, and then the quantitative and qualitative significance of gut dysbiosis in order to reveal the impact of gut microbiota modification using probiotics, prebiotics, synbiotics, postbiotics, fecal microbiota transplantation, and engineering biology methods as new therapeutic challenges in the management of disturbed energy homeostasis. Understanding the host–microbiota interaction and the remote regulation of other organs and pathways by gut microbiota can improve the effectiveness of new therapeutic approaches and mitigate the negative consequences of childhood malnutrition.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 5","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135482137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: Engineering in Life Sciences 10'23 封面图片:生命科学工程10’23
IF 2.7 4区 生物学
Engineering in Life Sciences Pub Date : 2023-10-03 DOI: 10.1002/elsc.202370101
{"title":"Cover Picture: Engineering in Life Sciences 10'23","authors":"","doi":"10.1002/elsc.202370101","DOIUrl":"https://doi.org/10.1002/elsc.202370101","url":null,"abstract":"","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 10","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202370101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50119888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioprocess development for endospore production by Bacillus coagulans using an optimized chemically defined medium 使用优化的化学限定培养基由凝结芽孢杆菌生产内生孢子的生物工艺开发
IF 2.7 4区 生物学
Engineering in Life Sciences Pub Date : 2023-09-15 DOI: 10.1002/elsc.202300210
Riekje Biermann, Laura Rösner, Lisa-Marie Beyer, Laura Niemeyer, Sascha Beutel
{"title":"Bioprocess development for endospore production by Bacillus coagulans using an optimized chemically defined medium","authors":"Riekje Biermann,&nbsp;Laura Rösner,&nbsp;Lisa-Marie Beyer,&nbsp;Laura Niemeyer,&nbsp;Sascha Beutel","doi":"10.1002/elsc.202300210","DOIUrl":"https://doi.org/10.1002/elsc.202300210","url":null,"abstract":"Bacillus coagulans is a promising probiotic, because it combines probiotic properties of Lactobacillus and the ability of Bacillus to form endospores. Due to this hybrid relationship, cultivation of this organism is challenging. As the probiotics market continues to grow, there is a new focus on the production of these microorganisms. In this work, a strain‐specific bioprocess for B. coagulans was developed to support growth on one hand and ensure sporulation on the other hand. This circumstance is not trivial, since these two metabolic states are contrary. The developed bioprocess uses a modified chemically defined medium which was further investigated in a one‐factor‐at‐a‐time assay after adaptation. A transfer from the shake flask to the bioreactor was successfully demonstrated in the scope of this work. The investigated process parameters included temperature, agitation and pH‐control. Especially the pH‐control improved the sporulation in the bioreactor when compared to shake flasks. The bioprocess resulted in a sporulation efficiency of 80%–90%. This corresponds to a sevenfold increase in sporulation efficiency due to a transfer to the bioreactor with pH‐control. Additionally, a design of experiment (DoE) was conducted to test the robustness of the bioprocess. This experiment validated the beforementioned sporulation efficiency for the developed bioprocess. Afterwards the bioprocess was then scaled up from a 1 L scale to a 10 L bioreactor scale. A comparable sporulation efficiency of 80% as in the small scale was achieved. The developed bioprocess facilitates the upscaling and application to an industrial scale, and can thus help meet the increasing market for probiotics.","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"23 10","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300210","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50134360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信