{"title":"RETRACTION: Evaluation of SDS-Coated Iron Nanostructure on the Gene Expression of Bio Surfactant-Producing Genes by Pseudomonas Aeruginosa","authors":"","doi":"10.1002/elsc.70007","DOIUrl":"https://doi.org/10.1002/elsc.70007","url":null,"abstract":"<p><b>Retraction</b>: Y.A. Arani, Z. Noormohammadi, B. Rasekh, F. Yazdian, and H. Kazemi, “Evaluation of SDS-Coated Iron Nanostructure on the Gene Expression of Bio Surfactant-Producing Genes by Pseudomonas Aeruginosa,” <i>Engineering in Life Sciences</i> 22, no. 9 (2022): 584–593, https://doi.org/10.1002/elsc.202200002.</p><p>The above article, published online on 24 August 2022, in Wiley Online Library (http://onlinelibrary.wiley.com/), has been retracted by agreement between the journal Editors-in-Chief, An-Ping Zeng and Ralf Takors; and Wiley Periodicals LLC. Following an investigation by the publisher, the parties have concluded that this article was accepted solely on the basis of a compromised peer review process. In addition, a third party informed the publisher that Figures 4 and 5 were reproduced from two articles published either previously or in the same year, and were used here in a different scientific context. The publisher has investigated and confirmed this, and found additional image manipulation in Figure 4. Therefore, the article must be retracted. Corresponding author Behnam Rasekh disagrees with this decision.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"25 2","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.70007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Production of an Innovative, Surface Area-Enhanced and Biodegradable Biofilm-Generating Device by 3D Printing","authors":"Atulona Datta, Rituparna Saha, Sovan Sahoo, Arup Ratan Roy, Shayontani Basu, Girish Mahajan, Subhash Chandra Panja, Joydeep Mukherjee","doi":"10.1002/elsc.202400046","DOIUrl":"https://doi.org/10.1002/elsc.202400046","url":null,"abstract":"<p>The enhanced surface cylindrical flask (ESCF) consists of an eight-striped inner arrangement holding 16 standard microscopic slides placed inside a cylindrical vessel. The specially designed spatula-accessible slides can be withdrawn from the vessel during cultivation without disturbing biofilm formation through an innovative window-flap accessibility mechanism. The vessel and its accessories were three-dimensional (3D) printed by applying a fused deposition modeling technique utilizing biodegradable polylactic acid. Biofilms of clinically relevant bacteria namely <i>Klebsiella pneumoniae</i>, <i>Pseudomonas aeruginosa</i>, <i>Staphylococcus aureus</i>, and <i>Escherichia coli</i> were successfully grown in the ESCF and observed through confocal laser scanning microscopy. Advantages of the device include an enhanced surface area for biofilm formation, ease of insertion and removal of microscopic slides, convenient fitting into standard rotary shaker platforms, creation of anoxic/microaerophilic environment inside the vessel as well as the feasibility of pH, dissolved gases, and metabolite measurements in the liquid surrounding the biofilm. The ESCF will find widespread application in medical, industrial, and environmental disciplines.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"25 2","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202400046","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143481481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Long, Lina Apitius, Patrick Lenz, Felix Jakob, Anna Joёlle Ruff , Ulrich Schwaneberg
{"title":"Secretory Production of Heterologous Antimicrobial Peptides in Corynebacterium glutamicum","authors":"Wei Long, Lina Apitius, Patrick Lenz, Felix Jakob, Anna Joёlle Ruff , Ulrich Schwaneberg","doi":"10.1002/elsc.70008","DOIUrl":"https://doi.org/10.1002/elsc.70008","url":null,"abstract":"<p>Antimicrobial peptides (AMPs) are host defense peptides that act against a broad spectrum of microorganisms. AMPs are of high interest as medicinal products, antimicrobial coatings, and for controlling biofilm formation. Applications and research of many AMPs are still hampered by insufficient titers and lack of production platforms that can tolerate high titers of AMPs. <i>Corynebacterium glutamicum</i> is an excellent microbial host for protein secretion and has been barely explored as a host for AMP production. Here, we report the successful production and secretion of two AMPs (amounts of up to 130 mg/L for liquid chromatography peak I [LCI] and 54 mg/L for Psoriasin) by <i>C. glutamicum</i> with low amounts of secreted byproducts.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"25 2","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.70008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143438751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rafael Machleid, Suneetha Nunna, Ajith George, Jonas Austerjost, Magda Tomala, Izabella Surowiec
{"title":"Real-Time VCC Monitoring and Forecasting in HEK-Cell-Based rAAV Vector Production Using Capacitance Spectroscopy","authors":"Rafael Machleid, Suneetha Nunna, Ajith George, Jonas Austerjost, Magda Tomala, Izabella Surowiec","doi":"10.1002/elsc.70004","DOIUrl":"https://doi.org/10.1002/elsc.70004","url":null,"abstract":"<p>Recombinant adeno-associated virus (rAAV) vector production is a complex process in which the robust cultivation of human embryonic kidney cells (HEK293) plays a critical role in generating high-quality viral vectors. Tracking the viable cell concentration (VCC) during upstream production is essential for process monitoring and for implementing actions that ensure optimal process management. The advent of inline capacitance probes has introduced a crucial process analytical technology (PAT) tool for real-time VCC measurement. Here, we present the development and application of a method for real-time monitoring of VCC in HEK293-based rAAV vector production. In a first step, BioPAT Viamass probes were used to record capacitance data of individual 10 L rAAV-8 batches within a frequency range of 50 kHz–20 MHz. Based on the capacitance data, a linear single-frequency model and an orthogonal partial least square (OPLS) multifrequency model for VCC prediction were developed. Subsequently, these models were deployed inline, and predictions were exposed into BioPAT MFCS bioprocess control software, enabling real-time VCC monitoring in subsequent rAAV-8 production batches. In addition, the continuous VCC signal was used as input for an exponential cell growth model that was deployed inline to provide accurate real-time forecasting of the transfection time point. To the best of our knowledge, this is the first example of inline deployment of VCC and Time-Till-Transfection predictive models to the bioprocess control system for real-time monitoring and forecasting of these parameters in HEK-cell-based transient rAAV vector production.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"25 2","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.70004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combination of Two-Stage Continuous Feeding and Optimized Synthetic Medium Increases Lipid Production in Lipomyces starkeyi","authors":"Chih-Chan Wu, Kenji Okano, Pijar Religia, Yuki Soma, Masatomo Takahashi, Yoshihiro Izumi, Takeshi Bamba, Kohsuke Honda","doi":"10.1002/elsc.70003","DOIUrl":"10.1002/elsc.70003","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <p>The oleaginous yeast <i>Lipomyces starkeyi</i> is recognized for its remarkable lipid accumulation under nitrogen-limited conditions. However, precise control of microbial lipid production in <i>L. starkeyi</i> remains challenging due to the complexity of nutrient media.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <p>We developed a two-stage fed-batch fermentation process using a well-defined synthetic medium in a 5-L bioreactor. In the first stage, the specific growth rate was maintained at a designated level by maximizing the cell density through optimizing the feeding rate, molar carbon-to-nitrogen (C/N) ratio, and phosphate concentration in feeding media, achieving a high cell density of 213 ± 10 × 10<sup>7</sup> cells mL<sup>−1</sup>. In the second stage, we optimized the molar C/N ratio in the feeding medium for lipid production and achieved high biomass (130 ± 5 g L<sup>−1</sup>), lipid titer (88 ± 6 g L<sup>−1</sup>), and lipid content (67% ± 2% of dry cellular weight). Our approach yielded a high lipid titer, comparable to the highest reported value of 68 g L<sup>−1</sup> achieved in a nutrient medium, by optimizing cultivation conditions with a synthetic medium in <i>L. starkeyi</i>. This highlights the importance of well-established yet powerful bioprocess approaches for the precise control of microbial cultivation.</p>\u0000 </section>\u0000 </div>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"25 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11779743/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143064544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gesa Brauneck, Dominik Engel, Luca Antonia Grebe, Maximilian Hoffmann, Philipp Georg Lichtenberg, Anne Neuß, Marcel Mann, Jorgen Barsett Magnus
{"title":"Pitfalls in Early Bioprocess Development Using Shake Flask Cultivations","authors":"Gesa Brauneck, Dominik Engel, Luca Antonia Grebe, Maximilian Hoffmann, Philipp Georg Lichtenberg, Anne Neuß, Marcel Mann, Jorgen Barsett Magnus","doi":"10.1002/elsc.70001","DOIUrl":"10.1002/elsc.70001","url":null,"abstract":"<p>For about 100 years, the shake flask has been established for biotechnological cultivations as one of the most important cultivation systems in early process development. Its appeal lies in its simple handling and highly versatile application for a wide range of cell types—from bacteria to mammalian cells. In recent decades, extensive research has been conducted on the shake flask, to not perform processes blindly but to gain a deeper understanding of the various process parameters, phenomena, and their impact on the process. Although the characterization of the shake flask is now well-established in literature, many publications show that this knowledge is often inadequately applied. Therefore, this review provides an overview of the current state of knowledge on various topics related to the shake flask. We first present the key process parameters and their influence on different physical phenomena, such as power input, the largely unknown in-phase/out-of-phase phenomenon, as well as temperature and mass transfer. Then, the most common online monitoring systems that have been established for shake flasks are discussed. Finally, various pitfalls that often arise from inadequate knowledge of handling shake flask cultivations are discussed and guidance on how to avoid them is provided.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"25 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773345/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Letha Chemmalil, Tanmay Kulkarni, Mathura Raman, Priya Singh, Yueming Qian, Chris Chumsae, Kyle McHugh, Zhuangrong Huang, Eric Hodgman, Michael C. Borys, Julia Ding, Gloria Li, Anthony Leone
{"title":"Integrated SegFlow, µSIA, and UPLC for Online Sialic Acid Quantitation of Glycoproteins Directly from Bioreactors","authors":"Letha Chemmalil, Tanmay Kulkarni, Mathura Raman, Priya Singh, Yueming Qian, Chris Chumsae, Kyle McHugh, Zhuangrong Huang, Eric Hodgman, Michael C. Borys, Julia Ding, Gloria Li, Anthony Leone","doi":"10.1002/elsc.202400031","DOIUrl":"10.1002/elsc.202400031","url":null,"abstract":"<p>This study emphasizes the critical importance of closely monitoring and controlling the sialic acid content in therapeutic glycoproteins, including EPO, interferon-γ, Orencia, Enbrel, and others, as the level of sialylation directly impacts their pharmacokinetics (PK), immunogenicity, potency, and overall clinical performance due to its influence on protein clearance via hepatic asialoglycoprotein receptors (ASGPR). The ASGPR recognizes and binds to glycoproteins exposed to terminal galactose or N-acetylgalactosamine residues, leading to receptor-mediated endocytosis. Recent studies have demonstrated that sialylation of O-linked glycan plays a role in protecting against macrophage galactose lectin (MGL)-mediated clearance. In addition to the impact on serum half-life, sialylation can influence other clinical outcomes, including immunogenicity, potency, and cytotoxicity. Therefore, the level of sialic acid is a critical quality attribute (CQA), and monitoring and regulating sialylation has become a regulatory requirement to ensure desired clinical performance. To achieve consistent levels of sialic acid-to-protein ratio, the time of upstream harvest and conductivity of downstream wash buffers must be tightly regulated based on the sialic acid content. Therefore, the utilization of process analytical technology (PAT) tools for generating real-time or near-real-time sialic acid content is a business-critical requirement. This work demonstrates the utility of an integrated PAT system for near real-time online sialic acid measurements. The system consists of a micro-sequential injection analyzer (µSIA) interfaced with SegFlow and an ultra performance liquid chromatography (UPLC). The fully automated architecture exemplifies the execution of online sampling, automatic sample preparation, and subsequent online UPLC analysis. This carefully orchestrated PAT framework effectively supports the requirements of QbD-driven continuous bioprocessing.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"25 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756511/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Santiago T. Boto, Kareem Gerges, Bettina Bardl, Miriam A. Rosenbaum
{"title":"Evaluation of Yeast Alcohol Acetyltransferases for Ethyl Acetate Production in Clostridium ljungdahlii","authors":"Santiago T. Boto, Kareem Gerges, Bettina Bardl, Miriam A. Rosenbaum","doi":"10.1002/elsc.202400076","DOIUrl":"10.1002/elsc.202400076","url":null,"abstract":"<p>Sustainable chemical production from C<sub>1</sub> gaseous substrates, such as syngas or CO<sub>2</sub>/H<sub>2</sub>, can be achieved through gas fermentation. In gas fermentation, acetogenic bacteria are able to utilize oxidized inorganic carbon sources as the sole carbon source and electron acceptor, while reduced inorganic species are used as the electron donor. <i>Clostridium ljungdahlii</i>, a model acetogen, is only capable of reducing CO<sub>2</sub> to acetate and ethanol, with H<sub>2</sub> as electron donor. In order to expand the product profile of this bacterium, five alcohol acetyltransferases (AATs) from yeast were heterologously expressed in <i>C. ljungdahlii</i> to evaluate its potential to produce ethyl acetate. When growing on CO<sub>2</sub> and H<sub>2</sub>, up to 7.38 ± 0.43 mg/L of ethyl acetate were produced. Using fructose as the main carbon and energy source, up to 23.15 ± 1.28 mg/L of ethyl acetate were produced. Ethanol and fumarate supplementation were able to boost ethyl acetate titers (up to 37.51 ± 9.44 mg/L). Hence, ethyl acetate production was enabled in <i>C. ljungdahlii</i> at low titers, which could be explained by the high energetic cost of operation of AATs, and their shown promiscuity. However, we also show that this opens the door to more complex esterification reactions of higher added value biomolecules.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"25 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756512/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polyporus umbellatus, A Precious Rare Fungus With Good Pharmaceutical and Food Value","authors":"Sizhu Ren, Hua Liu, Qing Sang, Yifan Sun, Liyan Li, Wenjie Chen","doi":"10.1002/elsc.202400048","DOIUrl":"10.1002/elsc.202400048","url":null,"abstract":"<p><i>Polyporus umbellatus</i> is a rare porous fungus that exhibits notable pharmacological activities. Particularly, due to its diuretic properties, it is considered an important source of targeted drugs for the treatment of kidney disease. Extensive research has been conducted on this fungus, focusing not only on its challenging cultivation techniques but also on its diverse array of medicinal ingredients, including polysaccharides and steroids. These active compounds demonstrate considerable variability and exhibit a wide range of medicinal properties. As a result, extracting, separating, and purifying these active compounds has become a subject of interest. This review aims to provide a comprehensive overview of the types, structures, and physicochemical properties of these active compounds. Additionally, the medicinal effects of <i>P. umbellatus</i> are thoroughly examined, offering valuable insights into the utilization of its resources and the rational development of medical fungi.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"25 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742960/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elham Maghareh Abed, Fatemeh Yazdian, Abbas Akhavan Sepahi, Behnam Rasekh
{"title":"Synthesis and Evaluation of PCL/Chitosan/CQD-Fe Magnetic Nanocomposite for Wound Healing: Emphasis on Gene Expression","authors":"Elham Maghareh Abed, Fatemeh Yazdian, Abbas Akhavan Sepahi, Behnam Rasekh","doi":"10.1002/elsc.202400038","DOIUrl":"10.1002/elsc.202400038","url":null,"abstract":"<p>The development of an effective and rapid method for healing the skin is of crucial importance. In this study, we prepared a porous scaffold made of polycaprolactone (PCL) and carbon quantum dots (CQDs), Fe, and Chitosan (Cs) as the scaffold core to cover the skin. Then evaluated antibacterial, biocompatibility, and wound healing properties as well as the expression of genes effective in wound healing. The PCL/Cs/CQD-Fe scaffold was synthesized via electrospinning and was evaluated of morphology, functional groups, and structure through Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and x-ray diffraction (XRD). The viability of the L929 fibroblast stem cells was obtained. The antibacterial effect, biocompatibility, and wound healing efficiency of the scaffold were investigated through minimum inhibitory concentration (MIC), (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and tissue analysis. The relative expression of genes platelet-derived growth factor (PDGF), transforming growth factor beta (TGF-β), and matrix metalloproteinase-1 (MMP1) was assessed through RT-PCR. The results of SEM showed the successful integration of the PCL scaffold with CQD-Fe and Cs. The mean size of PCL/Cs/CQD-Fe nanocomposite was in the range of 0.135–32.6 nm. The results of FTIR showed the formation of a link between CQD nanoparticles and Fe. The vibrating-sample magnetometer (VSM) proved the super para magnetism of the CQD-Fe magnetic nanoparticles (0.38 emu/g). The MIC of Cs/CQD-Fe against <i>Staphylococcus aureus</i> and <i>Escherichia coli</i> bacteria was 0.08 and 0.04 µg/mL, respectively. The mean expression of genes TGF-β and PDGF in the nanocomposite group were 0.05 and 0.015 on day 5 and 0.18 and 0.34 on day 15 and significantly increased after 15 days, whereas the mean expression of MMP1 in the nanocomposite group was 0.63 on day 5 and 0.12 on day 15 and significantly decreased after 15 days. According to the histological analysis, the thickest layer on Day 15 pertained to the nanocomposite group. Our findings indicated that PCL/Cs/CQD-Fe can improve skin regeneration due to its antibacterial effect, biocompatibility, and non-toxicity. This biocompatible nanocomposite is a scaffold that can be used for covering the skin.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"25 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742958/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}