Pitfalls in Early Bioprocess Development Using Shake Flask Cultivations

IF 3 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Gesa Brauneck, Dominik Engel, Luca Antonia Grebe, Maximilian Hoffmann, Philipp Georg Lichtenberg, Anne Neuß, Marcel Mann, Jorgen Barsett Magnus
{"title":"Pitfalls in Early Bioprocess Development Using Shake Flask Cultivations","authors":"Gesa Brauneck,&nbsp;Dominik Engel,&nbsp;Luca Antonia Grebe,&nbsp;Maximilian Hoffmann,&nbsp;Philipp Georg Lichtenberg,&nbsp;Anne Neuß,&nbsp;Marcel Mann,&nbsp;Jorgen Barsett Magnus","doi":"10.1002/elsc.70001","DOIUrl":null,"url":null,"abstract":"<p>For about 100 years, the shake flask has been established for biotechnological cultivations as one of the most important cultivation systems in early process development. Its appeal lies in its simple handling and highly versatile application for a wide range of cell types—from bacteria to mammalian cells. In recent decades, extensive research has been conducted on the shake flask, to not perform processes blindly but to gain a deeper understanding of the various process parameters, phenomena, and their impact on the process. Although the characterization of the shake flask is now well-established in literature, many publications show that this knowledge is often inadequately applied. Therefore, this review provides an overview of the current state of knowledge on various topics related to the shake flask. We first present the key process parameters and their influence on different physical phenomena, such as power input, the largely unknown in-phase/out-of-phase phenomenon, as well as temperature and mass transfer. Then, the most common online monitoring systems that have been established for shake flasks are discussed. Finally, various pitfalls that often arise from inadequate knowledge of handling shake flask cultivations are discussed and guidance on how to avoid them is provided.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"25 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773345/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Life Sciences","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsc.70001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

For about 100 years, the shake flask has been established for biotechnological cultivations as one of the most important cultivation systems in early process development. Its appeal lies in its simple handling and highly versatile application for a wide range of cell types—from bacteria to mammalian cells. In recent decades, extensive research has been conducted on the shake flask, to not perform processes blindly but to gain a deeper understanding of the various process parameters, phenomena, and their impact on the process. Although the characterization of the shake flask is now well-established in literature, many publications show that this knowledge is often inadequately applied. Therefore, this review provides an overview of the current state of knowledge on various topics related to the shake flask. We first present the key process parameters and their influence on different physical phenomena, such as power input, the largely unknown in-phase/out-of-phase phenomenon, as well as temperature and mass transfer. Then, the most common online monitoring systems that have been established for shake flasks are discussed. Finally, various pitfalls that often arise from inadequate knowledge of handling shake flask cultivations are discussed and guidance on how to avoid them is provided.

Abstract Image

用摇瓶培养进行早期生物工艺开发的陷阱。
摇瓶作为早期工艺开发中最重要的培养系统之一,在生物技术培养中已经建立了大约100年。它的吸引力在于操作简单,适用于从细菌到哺乳动物细胞的各种细胞类型。近几十年来,人们对摇瓶进行了广泛的研究,不是盲目地进行工艺,而是为了更深入地了解各种工艺参数、现象及其对工艺的影响。虽然摇瓶的特性现在在文献中已经建立,但许多出版物表明,这方面的知识往往没有得到充分的应用。因此,这篇综述提供了对与摇瓶相关的各种主题的知识现状的概述。我们首先介绍了关键工艺参数及其对不同物理现象的影响,如功率输入,大部分未知的同相/非相现象,以及温度和传质。然后,讨论了已建立的最常见的摇瓶在线监测系统。最后,各种陷阱,往往从处理摇瓶培养的知识不足,讨论和指导如何避免他们提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering in Life Sciences
Engineering in Life Sciences 工程技术-生物工程与应用微生物
CiteScore
6.40
自引率
3.70%
发文量
81
审稿时长
3 months
期刊介绍: Engineering in Life Sciences (ELS) focuses on engineering principles and innovations in life sciences and biotechnology. Life sciences and biotechnology covered in ELS encompass the use of biomolecules (e.g. proteins/enzymes), cells (microbial, plant and mammalian origins) and biomaterials for biosynthesis, biotransformation, cell-based treatment and bio-based solutions in industrial and pharmaceutical biotechnologies as well as in biomedicine. ELS especially aims to promote interdisciplinary collaborations among biologists, biotechnologists and engineers for quantitative understanding and holistic engineering (design-built-test) of biological parts and processes in the different application areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信