EnergiesPub Date : 2024-07-26DOI: 10.3390/en17153690
Kazuhiro Yamamoto, Ryosuke Nakayama
{"title":"Investigation of Alternative Substances for Replacing Hydrogen in Methanation","authors":"Kazuhiro Yamamoto, Ryosuke Nakayama","doi":"10.3390/en17153690","DOIUrl":"https://doi.org/10.3390/en17153690","url":null,"abstract":"Currently, a power-to-gas technology that obtains electrolytic hydrogen from renewable energy sources, synthesizes it with carbon dioxide, and converts it to methane has received a great deal of attention. It is called methanation, but there are few studies examining alternative substances to replace the raw material of hydrogen. Since hydrogen does not exist naturally, it is important to find other substances that react with carbon dioxide. We focus on flammable gases formed in oil refineries and petrochemical plants. In this study, based on chemical equilibrium calculations of the so-called NASA-CEA, we tested several gases including flammable and nonflammable gases by reacting them with carbon dioxide. Some of them are included in flare stacks. The reactants in the present gas conversion were H2O, CH3OH, C2H5OH, NH3, CH3CN, CH3N2CH3, C3H8O (1-propanol), C3H8O (2-propanol), C2H6, C2H4, C3H8, C3H6, C3H4 (allene), C3H4 (propine), C6H5OH, (CH3COOH)2, HCOOH, HF, HCl, HBr, H2S, HNO3, and SiH4. The results show that substances with more hydrogen atoms per mol of reactant, such as C3H8, CH3N2CH3, and SiH4, can produce more synthetic methane. One more finding is that graphite due to coking increases proportionately to the number of carbon atoms in the chemical formula.","PeriodicalId":11557,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141801199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnergiesPub Date : 2024-07-26DOI: 10.3390/en17153696
Szabina Tomasek, Norbert Miskolczi
{"title":"Co-Pyrolysis of Sewage Sludge, Two-Component Special Municipal Waste and Plastic Waste","authors":"Szabina Tomasek, Norbert Miskolczi","doi":"10.3390/en17153696","DOIUrl":"https://doi.org/10.3390/en17153696","url":null,"abstract":"In this study, the co-pyrolysis of sewage sludge (SS), two-component special municipal waste (SMW) and plastic waste (Plastic) was studied using thermogravimetric equipment and a scaled-up tubular reactor. During the experiments, the effects of the raw material composition and pyrolysis temperature on the decomposition processes, the product yields and compositions were investigated. It was found that co-pyrolysis was a series of complex reactions and resulted in more volatile and lower residue yield than the pyrolysis of the individual raw materials. In some cases (e.g., 25%SMW + 75%Plastic, 25%SS + 75%Plastic, 50%SS + 50%Plastic blends), it also caused a higher synthesis gas yield and H2/CO ratio. During the thermogravimetric analysis, the beneficial effects occurred at lower temperatures, but in the scaled-up experiments, these effects only prevailed at 900 °C as a result of the larger amount of raw materials and the worse heat transfer. The produced gases can be characterized by a lower heating value of 17.3–35 MJ/Nm3. Therefore, they can be used for energetic purposes; however, before chemical use, further quality improvement is needed due to the lower H2/CO ratios.","PeriodicalId":11557,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141799592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnergiesPub Date : 2024-07-26DOI: 10.3390/en17153680
Khaled Taouil, R. Aloulou, Salma Bradai, Amal Gassara, Mohamed Wajdi Kharrat, Badii Louati, Michel Giordani
{"title":"P2P Energy Exchange Architecture for Swarm Electrification-Driven PV Communities","authors":"Khaled Taouil, R. Aloulou, Salma Bradai, Amal Gassara, Mohamed Wajdi Kharrat, Badii Louati, Michel Giordani","doi":"10.3390/en17153680","DOIUrl":"https://doi.org/10.3390/en17153680","url":null,"abstract":"Swarm electrification-driven communities face significant challenges, including implementing advanced distributed control in areas with limited ICT access and establishing trust among villagers hesitant to grant access to their assets. This paper proposes a distributed DC microgrid architecture for P2P energy exchange in these communities, ensuring stability and an effective exchange operation. By implementing a Blockchain marketplace specifically designed to suit the rural context, the proposed architecture ensures tracing of exchange transactions to fairly settle participants. Validation experiments demonstrate its efficacy in achieving peak shaving. It provides 11% of the requester’s total demand from the community even while maintaining the constraint of reducing discharge–charge cycles to one per day, thereby preserving battery life. Additionally, the solution reduces prosumer production losses by 16% of the total PV production.","PeriodicalId":11557,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141800853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnergiesPub Date : 2024-07-26DOI: 10.3390/en17153692
Fengyi Han, Fei Du, Shuo Jiao, Kaifang Zou
{"title":"Predictive Analysis of a Building’s Power Consumption Based on Digital Twin Platforms","authors":"Fengyi Han, Fei Du, Shuo Jiao, Kaifang Zou","doi":"10.3390/en17153692","DOIUrl":"https://doi.org/10.3390/en17153692","url":null,"abstract":"Colleges and universities are large consumers of energy, with a huge potential for building energy efficiency, and need to reduce energy consumption to build a low-carbon, energy-saving campus. Predicting the energy consumption of campus buildings can help to accurately manage the electricity consumption of buildings and reduce the energy consumption of buildings. However, the electricity consumption of a building’s operation is affected by many factors, and it is difficult to establish a model for analysis and prediction. Therefore, in this study, the training building of the BIM education center on campus was selected as the research object, and a digital twin O&M platform was established by integrating IoT, digital twin technology (DDT), smart meter monitoring devices, and indoor environment monitoring devices. The O&M management platform can monitor real-time changes in indoor power consumption data and environmental parameters, and organize data on multiple influencing factors and power consumption. Following training, validation, and testing, the machine learning models (back propagation neural network, support vector model, and multiple linear regression model) were assessed and compared for accuracy. Following the multiple linear regression and support vector models, the backpropagation neural network model exhibited the highest accuracy. Consistent with the actual power consumption detection results in the BIM education center, the backpropagation neural network model produced results. Consequently, the BP model created in this study demonstrated its dependability and ability to forecast campus building power usage, assisting the university in organizing its energy supply and creating a campus that prioritizes conservation.","PeriodicalId":11557,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141798880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnergiesPub Date : 2024-07-26DOI: 10.3390/en17153685
Soufyane Naaim, B. Ouhammou, Mohammed Aggour, Brahim Daouchi, El Mahdi El Mers, Miriam Mihi
{"title":"Multi-Utility Solar Thermal Systems: Harnessing Parabolic Trough Concentrator Using SAM Software for Diverse Industrial and Residential Applications","authors":"Soufyane Naaim, B. Ouhammou, Mohammed Aggour, Brahim Daouchi, El Mahdi El Mers, Miriam Mihi","doi":"10.3390/en17153685","DOIUrl":"https://doi.org/10.3390/en17153685","url":null,"abstract":"This study investigates the technical and economic feasibility of a 20 MW parabolic trough solar thermal power plant (PTSTPP) located in Kenitra, Morocco, characterized by an annual average direct normal irradiance (DNI) exceeding 5.3 kWh/m2/day. Utilizing System Advisor Model (SAM) 2012.12.02 software, the plant is designed with Therminol VP-1 as the heat transfer fluid (HTF) throughout the solar field, coupled with a dry cooling system to reduce water consumption. The proposed thermal energy storage (TES) system employs HITEC solar salt as the storage medium, allowing for six full load hours of thermal energy storage. With a solar multiple (SM) of 2, the simulated plant demonstrates the capability to generate an annual electricity output of 50.51 GWh. The economic viability of the plant is further assessed, revealing a Levelized Cost of Electricity (LCOE) of 0.1717 $/kWh and a capacity factor (CF) of 32%. This comprehensive analysis provides valuable insights into the performance, economic viability, and sustainability of a parabolic trough solar power plant in the specific climatic conditions of Kenitra, Morocco.","PeriodicalId":11557,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141799139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on Photovoltaic Power Generation Characteristics of Small Ocean Observation Unmanned Surface Vehicles","authors":"Weiwei Yang, Bingzhen Wang, Wei Ke, Shuyuan Shen, Xiao Wu","doi":"10.3390/en17153699","DOIUrl":"https://doi.org/10.3390/en17153699","url":null,"abstract":"Under the action of waves, a small unmanned surface vehicle (USV) will experience continuous oscillation, significantly impacting its photovoltaic power generation system. This paper proposes a USV photovoltaic power generation simulation model, and the efficiency of photovoltaic MPPT control under wave action is studied. A simulation model for solar irradiance on solar panels of USV under wave action is established based on CFD and solar irradiation models. The dynamic changes in irradiance of USV solar panels under typical wave conditions are analyzed. The MPPT efficiency of USV photovoltaic power generation devices under continuously changing irradiance conditions is studied on this basis. The simulation research results indicate that waves and solar altitude angles significantly impact the instantaneous irradiation energy of USV photovoltaic devices. However, the impact of waves on the average irradiance is relatively tiny. The sustained oscillation of irradiance poses certain requirements for the Maximum Power Point Tracking (MPPT) control frequency of USV photovoltaic systems; a disturbance control frequency of no less than 50 Hz is proposed.","PeriodicalId":11557,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141799494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrochemical Performance of a Hybrid NiCo2O4@NiFelt Electrode at Different Operating Temperatures and Electrolyte pH","authors":"Ataollah Niyati, Arianna Moranda, Pouya Beigzadeh Arough, Federico Maria Navarra, Ombretta Paladino","doi":"10.3390/en17153703","DOIUrl":"https://doi.org/10.3390/en17153703","url":null,"abstract":"Transition metals such as nickel and cobalt as an alternative to Pt and Pd can be used for oxygen evolution reactions (OERs) and hydrogen production reactions (HERs) in alkaline environments, facilitating green hydrogen production as a sustainable alternative to fossil fuels. In this study, an NiCo2O4 catalyst was produced by a sono-hydrothermal method using urea as a hydrolysis agent. The electrochemical performance of the catalyst-coated NiFelt electrode was evaluated at different KOH concentrations (0.25, 0.5, and 1 M) and four operating temperatures in the interval of 20–80 °C. The electrode characteristics were investigated via electrochemical spectroscopy (cyclic voltammetry, EIS, multistep chronopotentiometry, multistep chronoamperometry) using two different reference electrodes (Ag/AgCl and Hg/HgO), to obtain insight into the anodic and cathodic peaks. XRD, SEM, EDS, and TEM analyses confirmed the purity, structure, and nanoscale particle size (20–45 nm) of the NiCo2O4 catalyst. The electrode showed symmetric CV with Ag/AgCl, making this reference electrode more appropriate for capacitance measurements, while Hg/HgO proved advantageous for EIS in alkaline solutions due to reduced noise. The overpotential of the catalyst-coated NiFelt decreased by 108 mV at 10 mA/cm2 compared to bare NiFelt, showing a good potential for its application in anion exchange membranes and alkaline electrolyzers at an industrial scale.","PeriodicalId":11557,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141800242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnergiesPub Date : 2024-07-26DOI: 10.3390/en17153700
Giovanny Chavez, Luis Tipán
{"title":"Maximum Power Transfer of a Photovoltaic Microgeneration System Using PSO-Based Dynamic Modeling","authors":"Giovanny Chavez, Luis Tipán","doi":"10.3390/en17153700","DOIUrl":"https://doi.org/10.3390/en17153700","url":null,"abstract":"This research aims to implement an already developed algorithm to obtain the maximum power transfer of a solar generation field based on a dynamic approach. The study addresses the sizing of the load to be supplied, which is a residential building. On the other hand, it also considers the field sizing as a function of the load and the operating characteristics of the selected inverter. The irradiance data correspond to the hourly record of a station that is part of the network of meteorological stations in Quito. Quito was chosen as the location for this research due to the optimization algorithm’s practical application and the availability of experimental equipment. The demand sizing is based on the regulations of the distribution company with jurisdiction in the area, which makes it a suitable test bed for the algorithm. The optimization algorithm is developed using Python (version 3.9), and the analysis of the behavior of the solar panels is performed by dynamic modeling using the Vensim software (version 10.1.2). Finally, comparative results are presented between using and not using the investigated circuit and algorithm in the photovoltaic system, obtaining an improvement in the generation over a system without the use of these improvements, validating these results by implementing them in a test system, obtaining ranges higher than 10% of the initially generated power.","PeriodicalId":11557,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141801586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnergiesPub Date : 2024-07-26DOI: 10.3390/en17153697
Piotr Wróblewski, S. Kachel
{"title":"Novel Approach to Analyzing Friction Losses by Modeling the Microflow of Lubricating Oil between the Piston Rings and Cylinder in Internal Combustion Engines","authors":"Piotr Wróblewski, S. Kachel","doi":"10.3390/en17153697","DOIUrl":"https://doi.org/10.3390/en17153697","url":null,"abstract":"This work focuses on the evolution of lubrication wedge shaping in internal combustion piston engines, taking into account liquid microflows on curved surfaces and coating microgeometries. It introduces a new approach to the analysis of friction losses by simulating the microflow of lubricating oil between the surfaces of piston rings cooperating with the cylinder surface. The models used take into account three types of microgeometry and material expansion. Key results indicate that microirregularities with a stereometry of 0.1–0.2 µm significantly influence the distribution of oil film thickness in the phase of maximum working pressure, which is critical for the functioning of the seal ring. The innovation of the work consists of demonstrating that, despite small changes in the friction force and power in the piston rings, changes in the minimum values of the oil film thickness are significant. The work highlights the failure to take into account microgeometry parameters in friction models, which leads to significant errors in the simulation results, especially in terms of oil film continuity and the contribution of mixed friction. The simulations also indicate that advanced geometric models with high mesh resolution are necessary only for the assessment of changes in oil film thickness during the highest pressure increase in the combustion chamber and taking into account various mixed friction conditions. The results suggest significant progress in engine design and performance, confirming the importance of advanced fluid and mixed friction models in piston engine lubrication research.","PeriodicalId":11557,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141800493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization Design of SOFC-GT Hybrid Power System for Aviation Application","authors":"Zhaoyi Chen, Fengli Liang, Junkui Mao, Zaixing Wang, Xinyong Jiang","doi":"10.3390/en17153681","DOIUrl":"https://doi.org/10.3390/en17153681","url":null,"abstract":"Developing high-efficiency and low-carbon propulsion systems is a pressing concern within the aviation field. This paper studies a hybrid power system that combines a solid oxide fuel cell and a gas turbine (SOFC-GT) with propane as fuel, which is easy to store and has a high energy density. The analysis focuses on key parameters such as compressor pressure ratio, fuel utilization rate, and fuel distribution. And a balance between system efficiency and the power-to-weight ratio has been achieved through multi-objective optimization. The conclusions indicate that system efficiency and system weight in the hybrid power system are optimized in opposite directions. Within the design parameters, the hybrid power system’s efficiency achieves 0.621, the specific fuel consumption is 115.2 g/kWh, and the power-to-weight ratio is 0.569 kW/kg. Further discussion on the application of this hybrid system in long-endurance unmanned aerial vehicles shows an efficiency of 0.651 during the cruise phase, indicating a promising application prospect of a propane-fueled SOFC-GT hybrid system in the aviation field.","PeriodicalId":11557,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141800021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}