Kim Henriksen, Federica Genovese, Alexander Reese-Petersen, Laurent P Audoly, Kai Sun, Morten A Karsdal, Philipp E Scherer
{"title":"Endotrophin, a Key Marker and Driver for Fibroinflammatory Disease.","authors":"Kim Henriksen, Federica Genovese, Alexander Reese-Petersen, Laurent P Audoly, Kai Sun, Morten A Karsdal, Philipp E Scherer","doi":"10.1210/endrev/bnad036","DOIUrl":"10.1210/endrev/bnad036","url":null,"abstract":"<p><p>Our overview covers several key areas related to recent results obtained for collagen type VI and endotrophin (ETP). (1) An introduction to the history of ETP, including how it was identified, how it is released, and its function and potential receptors. (2) An introduction to the collagen family, with a focus on what differentiates collagen type VI from an evolutionary standpoint. (3) An overview of collagen type VI, the 6 individual chains (COL6A1, A2, A3, A4, A5, and A6), their differences and similarities, as well as their expression profiles and function. (4) A detailed analysis of COL6A3, including the cleaved product endotrophin, and what separates it from the other 5 collagen 6 molecules, including its suggested function based on insights gained from knockout and gain of function mouse models. (5) The pathology of ETP. What leads to its presence and release and what are the consequences thereof? (6) Functional implications of circulating ETP. Here we review the data with the functional roles of ETP in mind. (7) We propose that ETP is a mediator for fibrotic (or fibroinflammatory) disorders. Based on what we know about ETP, we have to consider it as a target for the treatment of fibrotic (or fibroinflammatory) disorders. What segment(s) of the patient population would most dramatically respond to an ETP-targeted intervention? How can we find the population that would profit most from an intervention? We aim to present a broad overview over the ETP field at large, providing an assessment of where the future research efforts need to be placed to tap into the vast potential of ETP, both as a marker and as a target in different diseases.</p>","PeriodicalId":11544,"journal":{"name":"Endocrine reviews","volume":" ","pages":"361-378"},"PeriodicalIF":22.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492497/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138795231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: \"The Basis for Weekly Insulin Therapy: Evolving Evidence With Insulin Icodec and Insulin Efsitora Alfa\".","authors":"","doi":"10.1210/endrev/bnae012","DOIUrl":"10.1210/endrev/bnae012","url":null,"abstract":"","PeriodicalId":11544,"journal":{"name":"Endocrine reviews","volume":" ","pages":"436"},"PeriodicalIF":20.3,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074785/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140189554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julio Rosenstock, Rattan Juneja, John M Beals, Julie S Moyers, Liza Ilag, Rory J McCrimmon
{"title":"The Basis for Weekly Insulin Therapy: Evolving Evidence With Insulin Icodec and Insulin Efsitora Alfa.","authors":"Julio Rosenstock, Rattan Juneja, John M Beals, Julie S Moyers, Liza Ilag, Rory J McCrimmon","doi":"10.1210/endrev/bnad037","DOIUrl":"10.1210/endrev/bnad037","url":null,"abstract":"<p><p>Basal insulin continues to be a vital part of therapy for many people with diabetes. First attempts to prolong the duration of insulin formulations were through the development of suspensions that required homogenization prior to injection. These insulins, which required once- or twice-daily injections, introduced wide variations in insulin exposure contributing to unpredictable effects on glycemia. Advances over the last 2 decades have resulted in long-acting, soluble basal insulin analogues with prolonged and less variable pharmacokinetic exposure, improving their efficacy and safety, notably by reducing nocturnal hypoglycemia. However, adherence and persistence with once-daily basal insulin treatment remains low for many reasons including hypoglycemia concerns and treatment burden. A soluble basal insulin with a longer and flatter exposure profile could reduce pharmacodynamic variability, potentially reducing hypoglycemia, have similar efficacy to once-daily basal insulins, simplify dosing regimens, and improve treatment adherence. Insulin icodec (Novo Nordisk) and insulin efsitora alfa (basal insulin Fc [BIF], Eli Lilly and Company) are 2 such insulins designed for once-weekly administration, which have the potential to provide a further advance in basal insulin replacement. Icodec and efsitora phase 2 clinical trials, as well as data from the phase 3 icodec program indicate that once-weekly insulins provide comparable glycemic control to once-daily analogues, with a similar risk of hypoglycemia. This manuscript details the technology used in the development of once-weekly basal insulins. It highlights the clinical rationale and potential benefits of these weekly insulins while also discussing the limitations and challenges these molecules could pose in clinical practice.</p>","PeriodicalId":11544,"journal":{"name":"Endocrine reviews","volume":" ","pages":"379-413"},"PeriodicalIF":20.3,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091825/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139471727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Molecular Biology of Midgut Neuroendocrine Neoplasms.","authors":"Amy P Webster, Chrissie Thirlwell","doi":"10.1210/endrev/bnad034","DOIUrl":"10.1210/endrev/bnad034","url":null,"abstract":"<p><p>Midgut neuroendocrine neoplasms (NENs) are one of the most common subtypes of NEN, and their incidence is rising globally. Despite being the most frequently diagnosed malignancy of the small intestine, little is known about their underlying molecular biology. Their unusually low mutational burden compared to other solid tumors and the unexplained occurrence of multifocal tumors makes the molecular biology of midgut NENs a particularly fascinating field of research. This review provides an overview of recent advances in the understanding of the interplay of the genetic, epigenetic, and transcriptomic landscape in the development of midgut NENs, a topic that is critical to understanding their biology and improving treatment options and outcomes for patients.</p>","PeriodicalId":11544,"journal":{"name":"Endocrine reviews","volume":" ","pages":"343-350"},"PeriodicalIF":20.3,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074790/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138828789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Henri J L M Timmers, David Taïeb, Karel Pacak, Jacques W M Lenders
{"title":"Imaging of Pheochromocytomas and Paragangliomas.","authors":"Henri J L M Timmers, David Taïeb, Karel Pacak, Jacques W M Lenders","doi":"10.1210/endrev/bnae001","DOIUrl":"10.1210/endrev/bnae001","url":null,"abstract":"<p><p>Pheochromocytomas/paragangliomas are unique in their highly variable molecular landscape driven by genetic alterations, either germline or somatic. These mutations translate into different clusters with distinct tumor locations, biochemical/metabolomic features, tumor cell characteristics (eg, receptors, transporters), and disease course. Such tumor heterogeneity calls for different imaging strategies in order to provide proper diagnosis and follow-up. This also warrants selection of the most appropriate and locally available imaging modalities tailored to an individual patient based on consideration of many relevant factors including age, (anticipated) tumor location(s), size, and multifocality, underlying genotype, biochemical phenotype, chance of metastases, as well as the patient's personal preference and treatment goals. Anatomical imaging using computed tomography and magnetic resonance imaging and functional imaging using positron emission tomography and single photon emission computed tomography are currently a cornerstone in the evaluation of patients with pheochromocytomas/paragangliomas. In modern nuclear medicine practice, a multitude of radionuclides with relevance to diagnostic work-up and treatment planning (theranostics) is available, including radiolabeled metaiodobenzylguanidine, fluorodeoxyglucose, fluorodihydroxyphenylalanine, and somatostatin analogues. This review amalgamates up-to-date imaging guidelines, expert opinions, and recent discoveries. Based on the rich toolbox for anatomical and functional imaging that is currently available, we aim to define a customized approach in patients with (suspected) pheochromocytomas/paragangliomas from a practical clinical perspective. We provide imaging algorithms for different starting points for initial diagnostic work-up and course of the disease, including adrenal incidentaloma, established biochemical diagnosis, postsurgical follow-up, tumor screening in pathogenic variant carriers, staging and restaging of metastatic disease, theranostics, and response monitoring.</p>","PeriodicalId":11544,"journal":{"name":"Endocrine reviews","volume":" ","pages":"414-434"},"PeriodicalIF":20.3,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074798/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139416588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alicja A Skowronski, Rudolph L Leibel, Charles A LeDuc
{"title":"Neurodevelopmental Programming of Adiposity: Contributions to Obesity Risk.","authors":"Alicja A Skowronski, Rudolph L Leibel, Charles A LeDuc","doi":"10.1210/endrev/bnad031","DOIUrl":"10.1210/endrev/bnad031","url":null,"abstract":"<p><p>This review analyzes the published evidence regarding maternal factors that influence the developmental programming of long-term adiposity in humans and animals via the central nervous system (CNS). We describe the physiological outcomes of perinatal underfeeding and overfeeding and explore potential mechanisms that may mediate the impact of such exposures on the development of feeding circuits within the CNS-including the influences of metabolic hormones and epigenetic changes. The perinatal environment, reflective of maternal nutritional status, contributes to the programming of offspring adiposity. The in utero and early postnatal periods represent critically sensitive developmental windows during which the hormonal and metabolic milieu affects the maturation of the hypothalamus. Maternal hyperglycemia is associated with increased transfer of glucose to the fetus driving fetal hyperinsulinemia. Elevated fetal insulin causes increased adiposity and consequently higher fetal circulating leptin concentration. Mechanistic studies in animal models indicate important roles of leptin and insulin in central and peripheral programming of adiposity, and suggest that optimal concentrations of these hormones are critical during early life. Additionally, the environmental milieu during development may be conveyed to progeny through epigenetic marks and these can potentially be vertically transmitted to subsequent generations. Thus, nutritional and metabolic/endocrine signals during perinatal development can have lifelong (and possibly multigenerational) impacts on offspring body weight regulation.</p>","PeriodicalId":11544,"journal":{"name":"Endocrine reviews","volume":" ","pages":"253-280"},"PeriodicalIF":20.3,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10911958/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136396850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marc Gregory Yu, Daniel Gordin, Jialin Fu, Kyoungmin Park, Qian Li, George Liang King
{"title":"Protective Factors and the Pathogenesis of Complications in Diabetes.","authors":"Marc Gregory Yu, Daniel Gordin, Jialin Fu, Kyoungmin Park, Qian Li, George Liang King","doi":"10.1210/endrev/bnad030","DOIUrl":"10.1210/endrev/bnad030","url":null,"abstract":"<p><p>Chronic complications of diabetes are due to myriad disorders of numerous metabolic pathways that are responsible for most of the morbidity and mortality associated with the disease. Traditionally, diabetes complications are divided into those of microvascular and macrovascular origin. We suggest revising this antiquated classification into diabetes complications of vascular, parenchymal, and hybrid (both vascular and parenchymal) tissue origin, since the profile of diabetes complications ranges from those involving only vascular tissues to those involving mostly parenchymal organs. A major paradigm shift has occurred in recent years regarding the pathogenesis of diabetes complications, in which the focus has shifted from studies on risks to those on the interplay between risk and protective factors. While risk factors are clearly important for the development of chronic complications in diabetes, recent studies have established that protective factors are equally significant in modulating the development and severity of diabetes complications. These protective responses may help explain the differential severity of complications, and even the lack of pathologies, in some tissues. Nevertheless, despite the growing number of studies on this field, comprehensive reviews on protective factors and their mechanisms of action are not available. This review thus focused on the clinical, biochemical, and molecular mechanisms that support the idea of endogenous protective factors, and their roles in the initiation and progression of chronic complications in diabetes. In addition, this review also aimed to identify the main needs of this field for future studies.</p>","PeriodicalId":11544,"journal":{"name":"Endocrine reviews","volume":" ","pages":"227-252"},"PeriodicalIF":20.3,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10911956/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10139787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Diabetes Mellitus, Energy Metabolism, and COVID-19.","authors":"Caterina Conte, Elisa Cipponeri, Michael Roden","doi":"10.1210/endrev/bnad032","DOIUrl":"10.1210/endrev/bnad032","url":null,"abstract":"<p><p>Obesity, diabetes mellitus (mostly type 2), and COVID-19 show mutual interactions because they are not only risk factors for both acute and chronic COVID-19 manifestations, but also because COVID-19 alters energy metabolism. Such metabolic alterations can lead to dysglycemia and long-lasting effects. Thus, the COVID-19 pandemic has the potential for a further rise of the diabetes pandemic. This review outlines how preexisting metabolic alterations spanning from excess visceral adipose tissue to hyperglycemia and overt diabetes may exacerbate COVID-19 severity. We also summarize the different effects of SARS-CoV-2 infection on the key organs and tissues orchestrating energy metabolism, including adipose tissue, liver, skeletal muscle, and pancreas. Last, we provide an integrative view of the metabolic derangements that occur during COVID-19. Altogether, this review allows for better understanding of the metabolic derangements occurring when a fire starts from a small flame, and thereby help reducing the impact of the COVID-19 pandemic.</p>","PeriodicalId":11544,"journal":{"name":"Endocrine reviews","volume":" ","pages":"281-308"},"PeriodicalIF":20.3,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10911957/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71479425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Claudia E Ramirez Bustamante, Neeti Agarwal, Aaron R Cox, Sean M Hartig, Jordan E Lake, Ashok Balasubramanyam
{"title":"Adipose Tissue Dysfunction and Energy Balance Paradigms in People Living With HIV.","authors":"Claudia E Ramirez Bustamante, Neeti Agarwal, Aaron R Cox, Sean M Hartig, Jordan E Lake, Ashok Balasubramanyam","doi":"10.1210/endrev/bnad028","DOIUrl":"10.1210/endrev/bnad028","url":null,"abstract":"<p><p>Over the past 4 decades, the clinical care of people living with HIV (PLWH) evolved from treatment of acute opportunistic infections to the management of chronic, noncommunicable comorbidities. Concurrently, our understanding of adipose tissue function matured to acknowledge its important endocrine contributions to energy balance. PLWH experience changes in the mass and composition of adipose tissue depots before and after initiating antiretroviral therapy, including regional loss (lipoatrophy), gain (lipohypertrophy), or mixed lipodystrophy. These conditions may coexist with generalized obesity in PLWH and reflect disturbances of energy balance regulation caused by HIV persistence and antiretroviral therapy drugs. Adipocyte hypertrophy characterizes visceral and subcutaneous adipose tissue depot expansion, as well as ectopic lipid deposition that occurs diffusely in the liver, skeletal muscle, and heart. PLWH with excess visceral adipose tissue exhibit adipokine dysregulation coupled with increased insulin resistance, heightening their risk for cardiovascular disease above that of the HIV-negative population. However, conventional therapies are ineffective for the management of cardiometabolic risk in this patient population. Although the knowledge of complex cardiometabolic comorbidities in PLWH continues to expand, significant knowledge gaps remain. Ongoing studies aimed at understanding interorgan communication and energy balance provide insights into metabolic observations in PLWH and reveal potential therapeutic targets. Our review focuses on current knowledge and recent advances in HIV-associated adipose tissue dysfunction, highlights emerging adipokine paradigms, and describes critical mechanistic and clinical insights.</p>","PeriodicalId":11544,"journal":{"name":"Endocrine reviews","volume":" ","pages":"190-209"},"PeriodicalIF":22.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10911955/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9966284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pei Chia Eng, Maria Phylactou, Ambreen Qayum, Casper Woods, Hayoung Lee, Sara Aziz, Benedict Moore, Alexander D Miras, Alexander N Comninos, Tricia Tan, Steve Franks, Waljit S Dhillo, Ali Abbara
{"title":"Obesity-Related Hypogonadism in Women.","authors":"Pei Chia Eng, Maria Phylactou, Ambreen Qayum, Casper Woods, Hayoung Lee, Sara Aziz, Benedict Moore, Alexander D Miras, Alexander N Comninos, Tricia Tan, Steve Franks, Waljit S Dhillo, Ali Abbara","doi":"10.1210/endrev/bnad027","DOIUrl":"10.1210/endrev/bnad027","url":null,"abstract":"<p><p>Obesity-related hypogonadotropic hypogonadism is a well-characterized condition in men (termed male obesity-related secondary hypogonadism; MOSH); however, an equivalent condition has not been as clearly described in women. The prevalence of polycystic ovary syndrome (PCOS) is known to increase with obesity, but PCOS is more typically characterized by increased gonadotropin-releasing hormone (GnRH) (and by proxy luteinizing hormone; LH) pulsatility, rather than by the reduced gonadotropin levels observed in MOSH. Notably, LH levels and LH pulse amplitude are reduced with obesity, both in women with and without PCOS, suggesting that an obesity-related secondary hypogonadism may also exist in women akin to MOSH in men. Herein, we examine the evidence for the existence of a putative non-PCOS \"female obesity-related secondary hypogonadism\" (FOSH). We précis possible underlying mechanisms for the occurrence of hypogonadism in this context and consider how such mechanisms differ from MOSH in men, and from PCOS in women without obesity. In this review, we consider relevant etiological factors that are altered in obesity and that could impact on GnRH pulsatility to ascertain whether they could contribute to obesity-related secondary hypogonadism including: anti-Müllerian hormone, androgen, insulin, fatty acid, adiponectin, and leptin. More precise phenotyping of hypogonadism in women with obesity could provide further validation for non-PCOS FOSH and preface the ability to define/investigate such a condition.</p>","PeriodicalId":11544,"journal":{"name":"Endocrine reviews","volume":" ","pages":"171-189"},"PeriodicalIF":20.3,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10911953/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9957892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}