Educational and Psychological Measurement最新文献

筛选
英文 中文
Exploring the Influence of Response Styles on Continuous Scale Assessments: Insights From a Novel Modeling Approach 探索连续量表评估中反应风格的影响:新颖建模方法的启示
IF 2.7 3区 心理学
Educational and Psychological Measurement Pub Date : 2024-04-17 DOI: 10.1177/00131644241242789
Hung-Yu Huang
{"title":"Exploring the Influence of Response Styles on Continuous Scale Assessments: Insights From a Novel Modeling Approach","authors":"Hung-Yu Huang","doi":"10.1177/00131644241242789","DOIUrl":"https://doi.org/10.1177/00131644241242789","url":null,"abstract":"The use of discrete categorical formats to assess psychological traits has a long-standing tradition that is deeply embedded in item response theory models. The increasing prevalence and endorsement of computer- or web-based testing has led to greater focus on continuous response formats, which offer numerous advantages in both respondent experience and methodological considerations. Response styles, which are frequently observed in self-reported data, reflect a propensity to answer questionnaire items in a consistent manner, regardless of the item content. These response styles have been identified as causes of skewed scale scores and biased trait inferences. In this study, we investigate the impact of response styles on individuals’ responses within a continuous scale context, with a specific emphasis on extreme response style (ERS) and acquiescence response style (ARS). Building upon the established continuous response model (CRM), we propose extensions known as the CRM-ERS and CRM-ARS. These extensions are employed to quantitatively capture individual variations in these distinct response styles. The effectiveness of the proposed models was evaluated through a series of simulation studies. Bayesian methods were employed to effectively calibrate the model parameters. The results demonstrate that both models achieve satisfactory parameter recovery. Neglecting the effects of response styles led to biased estimation, underscoring the importance of accounting for these effects. Moreover, the estimation accuracy improved with increasing test length and sample size. An empirical analysis is presented to elucidate the practical applications and implications of the proposed models.","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"35 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140617770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Impact of Insufficient Effort Responses on the Order of Category Thresholds in the Polytomous Rasch Model 多变量 Rasch 模型中努力不足的反应对类别阈值顺序的影响
IF 2.7 3区 心理学
Educational and Psychological Measurement Pub Date : 2024-04-13 DOI: 10.1177/00131644241242806
Kuan-Yu Jin, Thomas Eckes
{"title":"The Impact of Insufficient Effort Responses on the Order of Category Thresholds in the Polytomous Rasch Model","authors":"Kuan-Yu Jin, Thomas Eckes","doi":"10.1177/00131644241242806","DOIUrl":"https://doi.org/10.1177/00131644241242806","url":null,"abstract":"Insufficient effort responding (IER) refers to a lack of effort when answering survey or questionnaire items. Such items typically offer more than two ordered response categories, with Likert-type scales as the most prominent example. The underlying assumption is that the successive categories reflect increasing levels of the latent variable assessed. This research investigates how IER affects the intended category order of Likert-type scales, focusing on the category thresholds in the polytomous Rasch model. In a simulation study, we examined several IER patterns in datasets generated from the mixture model for IER (MMIER). The key findings were (a) random responding and overusing the non-extreme categories of a five-category scale were each associated with high frequencies of disordered category thresholds; (b) raising the IER rate from 5% to 10% led to a substantial increase in threshold disordering, particularly among easy and difficult items; (c) narrow distances between adjacent categories (0.5 logits) were associated with more frequent disordering, compared with wide distances (1.0 logits). Two real-data examples highlighted the efficiency and utility of the MMIER for detecting latent classes of respondents exhibiting different forms of IER. Under the MMIER, the frequency of disordered thresholds was reduced substantially in both examples. The discussion focuses on the practical implications of using the MMIER in survey research and points to directions for future research.","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"116 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Latent Variable Forests for Latent Variable Score Estimation 用于潜在变量分数估计的潜在变量森林
IF 2.7 3区 心理学
Educational and Psychological Measurement Pub Date : 2024-04-01 DOI: 10.1177/00131644241237502
Franz Classe, Christoph Kern
{"title":"Latent Variable Forests for Latent Variable Score Estimation","authors":"Franz Classe, Christoph Kern","doi":"10.1177/00131644241237502","DOIUrl":"https://doi.org/10.1177/00131644241237502","url":null,"abstract":"We develop a latent variable forest (LV Forest) algorithm for the estimation of latent variable scores with one or more latent variables. LV Forest estimates unbiased latent variable scores based on confirmatory factor analysis (CFA) models with ordinal and/or numerical response variables. Through parametric model restrictions paired with a nonparametric tree-based machine learning approach, LV Forest estimates latent variable scores using models that are unbiased with respect to relevant subgroups in the population. This way, estimated latent variable scores are interpretable with respect to systematic influences of covariates without being biased by these variables. By building a tree ensemble, LV Forest takes parameter heterogeneity in latent variable modeling into account to capture subgroups with both good model fit and stable parameter estimates. We apply LV Forest to simulated data with heterogeneous model parameters as well as to real large-scale survey data. We show that LV Forest improves the accuracy of score estimation if parameter heterogeneity is present.","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"20 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fused SDT/IRT Models for Mixed-Format Exams 混合格式考试的融合 SDT/IRT 模型
IF 2.7 3区 心理学
Educational and Psychological Measurement Pub Date : 2024-03-28 DOI: 10.1177/00131644241235333
Lawrence T. DeCarlo
{"title":"Fused SDT/IRT Models for Mixed-Format Exams","authors":"Lawrence T. DeCarlo","doi":"10.1177/00131644241235333","DOIUrl":"https://doi.org/10.1177/00131644241235333","url":null,"abstract":"A psychological framework for different types of items commonly used with mixed-format exams is proposed. A choice model based on signal detection theory (SDT) is used for multiple-choice (MC) items, whereas an item response theory (IRT) model is used for open-ended (OE) items. The SDT and IRT models are shown to share a common conceptualization in terms of latent states of “know/don’t know” at the examinee level. This in turn suggests a way to join or “fuse” the models—through the probability of knowing. A general model that fuses the SDT choice model, for MC items, with a generalized sequential logit model, for OE items, is introduced. Fitting SDT and IRT models simultaneously allows one to examine possible differences in psychological processes across the different types of items, to examine the effects of covariates in both models simultaneously, to allow for relations among the model parameters, and likely offers potential estimation benefits. The utility of the approach is illustrated with MC and OE items from large-scale international exams.","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"40 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140322190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Examining the Dynamic of Clustering Effects in Multilevel Designs: A Latent Variable Method Application 考察多层次设计中聚类效应的动态:潜变量法的应用
IF 2.7 3区 心理学
Educational and Psychological Measurement Pub Date : 2024-02-21 DOI: 10.1177/00131644241228602
Tenko Raykov, Ahmed Haddadi, Christine DiStefano, Mohammed Alqabbaa
{"title":"Examining the Dynamic of Clustering Effects in Multilevel Designs: A Latent Variable Method Application","authors":"Tenko Raykov, Ahmed Haddadi, Christine DiStefano, Mohammed Alqabbaa","doi":"10.1177/00131644241228602","DOIUrl":"https://doi.org/10.1177/00131644241228602","url":null,"abstract":"This note is concerned with the study of temporal development in several indices reflecting clustering effects in multilevel designs that are frequently utilized in educational and behavioral research. A latent variable method-based approach is outlined, which can be used to point and interval estimate the growth or decline in important functions of level-specific variances in two-level and three-level settings. The procedure may also be employed for the purpose of examining stability over time in clustering effects. The method can be utilized with widely circulated latent variable modeling software, and is illustrated using empirical examples.","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"14 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139954004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correcting for Extreme Response Style: Model Choice Matters. 纠正极端反应风格:模型选择问题
IF 2.7 3区 心理学
Educational and Psychological Measurement Pub Date : 2024-02-01 Epub Date: 2023-02-17 DOI: 10.1177/00131644231155838
Martijn Schoenmakers, Jesper Tijmstra, Jeroen Vermunt, Maria Bolsinova
{"title":"Correcting for Extreme Response Style: Model Choice Matters.","authors":"Martijn Schoenmakers, Jesper Tijmstra, Jeroen Vermunt, Maria Bolsinova","doi":"10.1177/00131644231155838","DOIUrl":"10.1177/00131644231155838","url":null,"abstract":"<p><p>Extreme response style (ERS), the tendency of participants to select extreme item categories regardless of the item content, has frequently been found to decrease the validity of Likert-type questionnaire results. For this reason, various item response theory (IRT) models have been proposed to model ERS and correct for it. Comparisons of these models are however rare in the literature, especially in the context of cross-cultural comparisons, where ERS is even more relevant due to cultural differences between groups. To remedy this issue, the current article examines two frequently used IRT models that can be estimated using standard software: a multidimensional nominal response model (MNRM) and a IRTree model. Studying conceptual differences between these models reveals that they differ substantially in their conceptualization of ERS. These differences result in different category probabilities between the models. To evaluate the impact of these differences in a multigroup context, a simulation study is conducted. Our results show that when the groups differ in their average ERS, the IRTree model and MNRM can drastically differ in their conclusions about the size and presence of differences in the substantive trait between these groups. An empirical example is given and implications for the future use of both models and the conceptualization of ERS are discussed.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"1 1","pages":"145-170"},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795569/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41386423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-Method Measurement Planned Missing Data With Purposefully Selected Samples 使用特选样本的双方法测量计划缺失数据
IF 2.7 3区 心理学
Educational and Psychological Measurement Pub Date : 2024-01-05 DOI: 10.1177/00131644231222603
M. Xu, Jessica A. R. Logan
{"title":"Two-Method Measurement Planned Missing Data With Purposefully Selected Samples","authors":"M. Xu, Jessica A. R. Logan","doi":"10.1177/00131644231222603","DOIUrl":"https://doi.org/10.1177/00131644231222603","url":null,"abstract":"Research designs that include planned missing data are gaining popularity in applied education research. These methods have traditionally relied on introducing missingness into data collections using the missing completely at random (MCAR) mechanism. This study assesses whether planned missingness can also be implemented when data are instead designed to be purposefully missing based on student performance. A research design with purposefully selected missingness would allow researchers to focus all assessment efforts on a target sample, while still maintaining the statistical power of the full sample. This study introduces the method and demonstrates the performance of the purposeful missingness method within the two-method measurement planned missingness design using a Monte Carlo simulation study. Results demonstrate that the purposeful missingness method can recover parameter estimates in models with as much accuracy as the MCAR method, across multiple conditions.","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"29 47","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139382541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conceptualizing Correlated Residuals as Item-Level Method Effects in Confirmatory Factor Analysis 将相关残差概念化为确证因子分析中的项目级方法效应
IF 2.7 3区 心理学
Educational and Psychological Measurement Pub Date : 2023-12-23 DOI: 10.1177/00131644231218401
Karl Schweizer, A. Gold, Dorothea Krampen, Stefan Troche
{"title":"Conceptualizing Correlated Residuals as Item-Level Method Effects in Confirmatory Factor Analysis","authors":"Karl Schweizer, A. Gold, Dorothea Krampen, Stefan Troche","doi":"10.1177/00131644231218401","DOIUrl":"https://doi.org/10.1177/00131644231218401","url":null,"abstract":"Conceptualizing two-variable disturbances preventing good model fit in confirmatory factor analysis as item-level method effects instead of correlated residuals avoids violating the principle that residual variation is unique for each item. The possibility of representing such a disturbance by a method factor of a bifactor measurement model was investigated with respect to model identification. It turned out that a suitable way of realizing the method factor is its integration into a fixed-links, parallel-measurement or tau-equivalent measurement submodel that is part of the bifactor model. A simulation study comparing these submodels revealed similar degrees of efficiency in controlling the influence of two-variable disturbances on model fit. Perfect correspondence characterized the fit results of the model assuming correlated residuals and the fixed-links model, and virtually also the tau-equivalent model.","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"21 6","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139162221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Separation of Traits and Extreme Response Style in IRTree Models: The Role of Mimicry Effects for the Meaningful Interpretation of Estimates IRTree 模型中特质与极端反应风格的分离:模仿效应对有意义地解释估计值的作用
IF 2.7 3区 心理学
Educational and Psychological Measurement Pub Date : 2023-12-22 DOI: 10.1177/00131644231213319
Viola Merhof, Caroline M. Böhm, Thorsten Meiser
{"title":"Separation of Traits and Extreme Response Style in IRTree Models: The Role of Mimicry Effects for the Meaningful Interpretation of Estimates","authors":"Viola Merhof, Caroline M. Böhm, Thorsten Meiser","doi":"10.1177/00131644231213319","DOIUrl":"https://doi.org/10.1177/00131644231213319","url":null,"abstract":"Item response tree (IRTree) models are a flexible framework to control self-reported trait measurements for response styles. To this end, IRTree models decompose the responses to rating items into sub-decisions, which are assumed to be made on the basis of either the trait being measured or a response style, whereby the effects of such person parameters can be separated from each other. Here we investigate conditions under which the substantive meanings of estimated extreme response style parameters are potentially invalid and do not correspond to the meanings attributed to them, that is, content-unrelated category preferences. Rather, the response style factor may mimic the trait and capture part of the trait-induced variance in item responding, thus impairing the meaningful separation of the person parameters. Such a mimicry effect is manifested in a biased estimation of the covariance of response style and trait, as well as in an overestimation of the response style variance. Both can lead to severely misleading conclusions drawn from IRTree analyses. A series of simulation studies reveals that mimicry effects depend on the distribution of observed responses and that the estimation biases are stronger the more asymmetrically the responses are distributed across the rating scale. It is further demonstrated that extending the commonly used IRTree model with unidimensional sub-decisions by multidimensional parameterizations counteracts mimicry effects and facilitates the meaningful separation of parameters. An empirical example of the Program for International Student Assessment (PISA) background questionnaire illustrates the threat of mimicry effects in real data. The implications of applying IRTree models for empirical research questions are discussed.","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"179 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139165688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of the Quantity and Magnitude of Cross-Loading and Model Specification on MIRT Item Parameter Recovery 交叉加载的数量和幅度以及模型规格对 MIRT 项目参数恢复的影响
IF 2.7 3区 心理学
Educational and Psychological Measurement Pub Date : 2023-12-21 DOI: 10.1177/00131644231210509
Mostafa Hosseinzadeh, Ki Lynn Matlock Cole
{"title":"Effects of the Quantity and Magnitude of Cross-Loading and Model Specification on MIRT Item Parameter Recovery","authors":"Mostafa Hosseinzadeh, Ki Lynn Matlock Cole","doi":"10.1177/00131644231210509","DOIUrl":"https://doi.org/10.1177/00131644231210509","url":null,"abstract":"In real-world situations, multidimensional data may appear on large-scale tests or psychological surveys. The purpose of this study was to investigate the effects of the quantity and magnitude of cross-loadings and model specification on item parameter recovery in multidimensional Item Response Theory (MIRT) models, especially when the model was misspecified as a simple structure, ignoring the quantity and magnitude of cross-loading. A simulation study that replicated this scenario was designed to manipulate the variables that could potentially influence the precision of item parameter estimation in the MIRT models. Item parameters were estimated using marginal maximum likelihood, utilizing the expectation-maximization algorithms. A compensatory two-parameter logistic-MIRT model with two dimensions and dichotomous item–responses was used to simulate and calibrate the data for each combination of conditions across 500 replications. The results of this study indicated that ignoring the quantity and magnitude of cross-loading and model specification resulted in inaccurate and biased item discrimination parameter estimates. As the quantity and magnitude of cross-loading increased, the root mean square of error and bias estimates of item discrimination worsened.","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"63 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138950656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信