{"title":"Tissue-resident memory cells in antitumoral immunity and cancer immunotherapy","authors":"","doi":"10.1016/j.coi.2024.102499","DOIUrl":"10.1016/j.coi.2024.102499","url":null,"abstract":"<div><div>As cancer immunotherapy evolves, tissue-resident memory (T<sub>RM</sub>) cells remain key contributors to the antitumoral immune response due to their ability to mediate local tumor control, high expression of immune checkpoints, potential to respond to immunotherapy, and location across tissue sites where distal tumor metastases occur. This review synthesizes recent findings on the biology of T<sub>RM</sub> cells, their role in cancer, and their interactions with the tumor microenvironment. We also identify several critical research gaps, such as how mechanistic interrogation of T<sub>RM</sub> cell function is required for integration into therapeutics, proposing a focused research agenda to better exploit their potential.</div></div>","PeriodicalId":11361,"journal":{"name":"Current Opinion in Immunology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metabolic requirements of type 2 lymphocytes in allergic disease","authors":"","doi":"10.1016/j.coi.2024.102500","DOIUrl":"10.1016/j.coi.2024.102500","url":null,"abstract":"<div><div>Allergic diseases continue to increase in prevalence across the globe. Decades of research has uncovered the cytokines and transcription factors that are central to the allergic immune response, but only in the last few years have we begun to understand the metabolic requirements of allergic immunity. Here, we discuss the metabolic features of so-called ‘type 2’ lymphocytes, which are heavily implicated in allergy. We highlight the central role that nuclear receptors, such as peroxisome proliferator–activated receptor gamma, play in type 2 lymphocyte biology and explore the influence of dietary and microbial factors in allergic inflammation. In the future, targeting metabolic checkpoints may offer a meaningful way of treating patients with allergic disorders.</div></div>","PeriodicalId":11361,"journal":{"name":"Current Opinion in Immunology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The immunometabolic roots of aging","authors":"","doi":"10.1016/j.coi.2024.102498","DOIUrl":"10.1016/j.coi.2024.102498","url":null,"abstract":"<div><div>Aging is one of the greatest risk factors for several chronic diseases and is accompanied by a progressive decline of cellular and organ function. Recent studies have highlighted the changes in metabolism as one of the main drivers of organism dysfunctions during aging and how that strongly deteriorate immune cell performance and function. Indeed, a dysfunctional immune system has been shown to have a pleiotropic impact on the organism, accelerating the overall aging process of an individual.</div><div>Intrinsic and extrinsic factors are responsible for such metabolic alterations. Understanding the contribution, regulation, and connection of these different factors is fundamental to comprehend the process of aging and develop approaches to mitigate age-related immune decline. Here, we describe metabolic perturbations occurring at cellular and systemic levels. Particularly, we emphasize the interplay between metabolism and immunosenescence and describe novel interventions to protect immune function and promote health span.</div></div>","PeriodicalId":11361,"journal":{"name":"Current Opinion in Immunology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Host-encoded antivirulence defenses: host physiologies teach pathogens to play nice","authors":"","doi":"10.1016/j.coi.2024.102472","DOIUrl":"10.1016/j.coi.2024.102472","url":null,"abstract":"<div><div>Successful treatment of infectious diseases requires a multiprong approach involving strategies that limit pathogen burdens and that limit disease. Traditionally, disease defense is thought to be a direct function of pathogen killing, and thus, our current methods for treating infections have largely relied on pathogen eradication, leading to drug resistance. Strategies that target the virulence of the pathogen, called antivirulence, have been proposed to be a necessary strategy to integrate into our infectious disease toolbox to promote disease defense and alleviate the burden of drug resistance. Traditional antivirulence strategies have largely focused on developing compounds that directly target microbial virulence factors or products to impair their ability to initiate and sustain infection. As virulence is linked to pathogen fitness, simply targeting a virulence factor may not be sufficient to overcome the ability of pathogens evolving resistance. In this review, I discuss co-operative defenses that hosts have evolved to promote antivirulence mechanisms that suppress pathogen virulence without having a negative impact on pathogen fitness. I also discuss the different definitions antivirulence has been assigned over the years and suggest a more holistic one. Co-operative defenses remain an underexplored resource in medicine, and by learning from how hosts have evolved to promote antivirulence, we have the potential to develop disease defense interventions without the risk of pathogens developing drug resistance.</div></div>","PeriodicalId":11361,"journal":{"name":"Current Opinion in Immunology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142396230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metabolism and macrophages in the tumor microenvironment","authors":"","doi":"10.1016/j.coi.2024.102491","DOIUrl":"10.1016/j.coi.2024.102491","url":null,"abstract":"<div><div>Tumor-associated macrophages (TAMs) constitute the primary subset of immune cells within the tumor microenvironment (TME). Exhibiting both phenotypic and functional heterogeneity, TAMs play distinct roles in tumor initiation, progression, and responses to therapy in patients with cancer. In response to various immune and metabolic cues within the TME, TAMs dynamically alter their metabolic profiles to adapt. Changes in glucose, amino acid, and lipid metabolism in TAMs, as well as their interaction with oncometabolites, not only sustain their energy demands but also influence their impact on tumor immune responses. Understanding the molecular mechanisms underlying the metabolic reprogramming of TAMs and their orchestration of metabolic processes can offer insights for the development of novel cancer immunotherapies targeting TAMs. Here, we discuss how metabolism reprograms macrophages in the TME and review clinical trials aiming to normalize metabolic alterations in TAMs and alleviate TAM-mediated immune suppression and protumor activity.</div></div>","PeriodicalId":11361,"journal":{"name":"Current Opinion in Immunology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Carbohydrate metabolism in supporting and regulating neutrophil effector functions","authors":"","doi":"10.1016/j.coi.2024.102497","DOIUrl":"10.1016/j.coi.2024.102497","url":null,"abstract":"<div><div>Neutrophils, the first responders of the innate immune system, can turn on a range of effector functions upon activation. Emerging research shows activated neutrophils undergo highly dynamic metabolic rewiring. This metabolic rewiring provides energy and reducing power to fuel effector functions and modulate signaling molecules to regulate neutrophil functions. Here, we review the current understanding of the specific metabolic requirements and regulators of neutrophil migration, neutrophil extracellular traps release, and pathogen killing. Particularly, we discuss how major carbohydrate metabolic pathways, including glycolysis, glycogen cycling, pentose phosphate pathway, and TCA cycle, are rewired upon neutrophil activation to support these functions. Continued investigation into the metabolic regulators of neutrophil functions can lead to therapeutic opportunities in various diseases.</div></div>","PeriodicalId":11361,"journal":{"name":"Current Opinion in Immunology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Immunometabolic regulation of germinal centers and its implications for aging","authors":"","doi":"10.1016/j.coi.2024.102485","DOIUrl":"10.1016/j.coi.2024.102485","url":null,"abstract":"<div><div>Aging, metabolism, and immunity have long been considered distinct domains. Aging is primarily associated with the gradual decline of physiological functions, metabolism regulates energy production and maintains cellular processes, and the immune system manages innate and adaptive responses against pathogens and vaccines. However, recent studies have revealed that these three systems are intricately interconnected, collectively influencing an individual’s response to stress and disease. This review explores the interplay between immunometabolism, T follicular helper cells, B cells, and aging, focusing on how these interactions impact immune function in the elderly.</div></div>","PeriodicalId":11361,"journal":{"name":"Current Opinion in Immunology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regulation of inflammation by Interleukin-10 in the intestinal and respiratory mucosa","authors":"","doi":"10.1016/j.coi.2024.102495","DOIUrl":"10.1016/j.coi.2024.102495","url":null,"abstract":"<div><div>Intricate immune regulation is required at mucosal surfaces to allow tolerance to microbiota and harmless allergens and to prevent overexuberant inflammatory responses to pathogens. The cytokine Interleukin-10 (IL-10) is a key mediator of mucosal immune regulation. While IL-10 can be produced by virtually all cells of the immune system, many of its <em>in vivo</em> functions depend upon its production by regulatory or effector T cell populations and its signalling to macrophages, dendritic cells and specific T cell subsets. In this review, we discuss our current understanding of the role of IL-10 in regulation of immune responses, with a focus on its context-specific roles in intestinal homeostasis, respiratory infection and asthma. We highlight the importance of appropriate production and function of IL-10 for balancing pathogen clearance, control of microbiota and host tissue damage, and that precise modulation of IL-10 functions <em>in vivo</em> could present therapeutic opportunities.</div></div>","PeriodicalId":11361,"journal":{"name":"Current Opinion in Immunology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fuelling B cells: dynamic regulation of B cell metabolism","authors":"","doi":"10.1016/j.coi.2024.102484","DOIUrl":"10.1016/j.coi.2024.102484","url":null,"abstract":"<div><div>B cells experience extreme alterations in their metabolism throughout their life cycle, from naïve B cells, which have minimal activity, to germinal centre (GC) B cells, which proliferate at the fastest rate of all cells, to long-lived plasma cells with very high levels of protein production that can persist for decades. The underpinning of these transitions remains incompletely understood, and a key question is how utilisation of fuel source supports B cell metabolism. For example, GC B cells, unlike almost all rapidly proliferating cells, mainly use fatty acid oxidation rather than glycolysis. However, following differentiation to plasma cells, their metabolism switches towards a high rate of glucose consumption to aid antibody production. In this review, we discuss the key metabolic pathways in B cells, linking them to cellular signalling events and placing them in the context of disease and therapeutic potential.</div></div>","PeriodicalId":11361,"journal":{"name":"Current Opinion in Immunology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Role of allergen immunotherapy and biologics in allergic diseases","authors":"","doi":"10.1016/j.coi.2024.102494","DOIUrl":"10.1016/j.coi.2024.102494","url":null,"abstract":"<div><div>The rise in the prevalence of allergic diseases has become a global health burden. Allergic diseases are a group of immune-mediated disorders characterized by IgE-mediated conditions resulting from a type 2 helper T cell (Th2)-skewed immune response. This review aims to comprehensively summarize recent research on the roles of allergen immunotherapy (AIT) and biologics in allergic diseases. Specifically, we review the mechanisms of AIT and biologics in modulating innate and adaptive immunity involved in allergic disease pathogenesis, as well as their safety and efficacy in the treatment of allergic diseases. We also discuss current new AIT strategies such as recombinant allergen-based vaccines and allergen extract nanoencapsulation. Further research is needed to understand immune tolerance mechanisms beyond the Th2 pathway and to characterize immunological changes in responders and nonresponders to AIT or biologics. This additional research may uncover new targets for monitoring treatment responses and developing personalized treatment strategies for allergic diseases.</div></div>","PeriodicalId":11361,"journal":{"name":"Current Opinion in Immunology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}