Current Biology最新文献

筛选
英文 中文
Archaeogenetics: Four letters from Pompeii. 考古遗传学:来自庞贝的四封信
IF 8.1 1区 生物学
Current Biology Pub Date : 2024-11-18 DOI: 10.1016/j.cub.2024.10.009
Kyle Harper
{"title":"Archaeogenetics: Four letters from Pompeii.","authors":"Kyle Harper","doi":"10.1016/j.cub.2024.10.009","DOIUrl":"https://doi.org/10.1016/j.cub.2024.10.009","url":null,"abstract":"<p><p>As archaeogenetics - the study of DNA from (pre-)historical samples - comes of age, it complements and contrasts historical and archaeological records in novel ways. DNA from victims of the eruption of Vesuvius that destroyed Pompeii provides an interesting case study.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":"34 22","pages":"R1152-R1154"},"PeriodicalIF":8.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep genetic substructure within bonobos. 倭黑猩猩的深层基因亚结构。
IF 8.1 1区 生物学
Current Biology Pub Date : 2024-11-18 Epub Date: 2024-10-15 DOI: 10.1016/j.cub.2024.09.043
Sojung Han, Cesare de Filippo, Genís Parra, Juan Ramon Meneu, Romain Laurent, Peter Frandsen, Christina Hvilsom, Ilan Gronau, Tomas Marques-Bonet, Martin Kuhlwilm, Aida M Andrés
{"title":"Deep genetic substructure within bonobos.","authors":"Sojung Han, Cesare de Filippo, Genís Parra, Juan Ramon Meneu, Romain Laurent, Peter Frandsen, Christina Hvilsom, Ilan Gronau, Tomas Marques-Bonet, Martin Kuhlwilm, Aida M Andrés","doi":"10.1016/j.cub.2024.09.043","DOIUrl":"10.1016/j.cub.2024.09.043","url":null,"abstract":"<p><p>Establishing the genetic and geographic structure of populations is fundamental, both to understand their evolutionary past and preserve their future. Nevertheless, the patterns of genetic population structure are unknown for most endangered species. This is the case for bonobos (Pan paniscus), which, together with chimpanzees (Pan troglodytes), are humans' closest living relatives. Chimpanzees live across equatorial Africa and are classified into four subspecies,<sup>1</sup> with some genetic population substructure even within subspecies. Conversely, bonobos live exclusively in the Democratic Republic of Congo and are considered a homogeneous group with low genetic diversity,<sup>2</sup> despite some population structure inferred from mtDNA. Nevertheless, mtDNA aside, their genetic structure remains unknown, hampering our understanding of the species and conservation efforts. Mapping bonobo genetic diversity in space is, however, challenging because, being endangered, only non-invasive sampling is possible for wild individuals. Here, we jointly analyze the exomes and mtDNA from 20 wild-born bonobos, the whole genomes of 10 captive bonobos, and the mtDNA of 136 wild individuals. We identify three genetically distinct bonobo groups of inferred Central, Western, and Far-Western geographic origin within the bonobo range. We estimate the split time between the central and western populations to be ∼145,000 years ago and genetic differentiation to be in the order of that of the closest chimpanzee subspecies. Furthermore, our estimated long-term N<sub>e</sub> for Far-West (∼3,000) is among the lowest estimated for any great ape lineage. Our results highlight the need to attend to the bonobo substructure, both in terms of research and conservation.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"5341-5348.e3"},"PeriodicalIF":8.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three RLKs integrate SHR-SCR and gibberellins to regulate root ground tissue patterning in Arabidopsis thaliana. 三种 RLK 整合了 SHR-SCR 和赤霉素,以调节拟南芥根部组织形态。
IF 8.1 1区 生物学
Current Biology Pub Date : 2024-11-18 Epub Date: 2024-10-29 DOI: 10.1016/j.cub.2024.09.074
Jinke Chang, Jun Hu, Liangfan Wu, Weiyue Chen, Juan Shen, Xianghui Qi, Jia Li
{"title":"Three RLKs integrate SHR-SCR and gibberellins to regulate root ground tissue patterning in Arabidopsis thaliana.","authors":"Jinke Chang, Jun Hu, Liangfan Wu, Weiyue Chen, Juan Shen, Xianghui Qi, Jia Li","doi":"10.1016/j.cub.2024.09.074","DOIUrl":"10.1016/j.cub.2024.09.074","url":null,"abstract":"<p><p>Precise regulation of cell division is essential for proper tissue patterning in multicellular organisms. In Arabidopsis, the ground tissue (GT) comprises cortex and endodermis in the early stages of root development. During GT maturation, additional periclinal cell divisions (PCDs) occasionally occur of the endodermis, generating a middle cortex (MC) layer between the cortex and endodermis. Although several regulatory proteins and phytohormones were identified to mediate GT patterning, such as SHORT-ROOT (SHR), SCARECROW (SCR), CYCLIND6;1 (CYCD6;1), and gibberellins (GAs), the interrelationship among these factors is not elucidated. Here, we report that three closely related receptor-like kinases (RLKs), ARH1, FEI1, and FEI2, play crucial roles in mediating a signal transduction pathway from the SHR-SCR module to GA to regulate GT patterning. Two independent triple mutants of these RLKs (tri-1 and tri-2) exhibit increased MC formation compared with wild type. Genetic analysis indicated that all three RLKs regulate MC formation mainly in a cell-autonomous manner. The transcription levels of these RLKs are negatively controlled by SHR and SCR. The altered GT patterns in shr and scr can be partially complemented by tri-1. GA biosynthesis is significantly reduced in the roots of tri-1. The excessive MC formation in tri-1 can be greatly suppressed by the exogenous application of GA<sub>3</sub> or by the mutation of CYCD6;1. Our results demonstrate a signaling pathway involving SHR/SCR-ARH1/FEI1/FEI2-GA-CYCD6;1 to govern GT patterning in Arabidopsis thaliana.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"5295-5306.e5"},"PeriodicalIF":8.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Buckling mechanics: A Nosetta Stone to understand rhinoglyphics. 屈曲力学:了解犀牛文字的诺塞塔石碑
IF 8.1 1区 生物学
Current Biology Pub Date : 2024-11-18 DOI: 10.1016/j.cub.2024.10.003
Devany Du, Nandan L Nerurkar
{"title":"Buckling mechanics: A Nosetta Stone to understand rhinoglyphics.","authors":"Devany Du, Nandan L Nerurkar","doi":"10.1016/j.cub.2024.10.003","DOIUrl":"https://doi.org/10.1016/j.cub.2024.10.003","url":null,"abstract":"<p><p>The wet noses of dogs and other mammals are attributed to polygonal arrays of fluid-retaining grooves thought to aid in thermoregulation, chemosensation, and even hunting. A new study reveals the mechanical basis of their morphogenesis.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":"34 22","pages":"R1137-R1139"},"PeriodicalIF":8.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changes in DNA repair compartments and cohesin loss promote DNA damage accumulation in aged oocytes. DNA 修复区的变化和凝聚素的缺失会促进衰老卵母细胞中 DNA 损伤的积累。
IF 8.1 1区 生物学
Current Biology Pub Date : 2024-11-18 Epub Date: 2024-10-21 DOI: 10.1016/j.cub.2024.09.040
Ninadini Sharma, Giovanni Coticchio, Andrea Borini, Kikuë Tachibana, Kim A Nasmyth, Melina Schuh
{"title":"Changes in DNA repair compartments and cohesin loss promote DNA damage accumulation in aged oocytes.","authors":"Ninadini Sharma, Giovanni Coticchio, Andrea Borini, Kikuë Tachibana, Kim A Nasmyth, Melina Schuh","doi":"10.1016/j.cub.2024.09.040","DOIUrl":"10.1016/j.cub.2024.09.040","url":null,"abstract":"<p><p>Oocyte loss, a natural process that accelerates as women approach their mid-30s, poses a significant challenge to female reproduction. Recent studies have identified DNA damage as a primary contributor to oocyte loss, but the mechanisms underlying DNA damage accumulation remain unclear. Here, we show that aged oocytes have a lower DNA repair capacity and reduced mobility of DNA damage sites compared to young oocytes. Incomplete DNA repair in aged oocytes results in defective chromosome integrity and partitioning, thereby compromising oocyte quality. We found that DNA repair proteins are arranged in spatially distinct DNA repair compartments that form during the late stages of oocyte growth, accompanied by changes in the activity of DNA repair pathways. We demonstrate alterations in these compartments with age, including substantial changes in the levels of key DNA repair proteins and a shift toward error-prone DNA repair pathways. In addition, we show that reduced cohesin levels make aged oocytes more vulnerable to persistent DNA damage and cause changes in DNA repair compartments. Our study links DNA damage accumulation in aged oocytes, a leading cause of oocyte loss, to cohesin deterioration and changes in the organization, abundance, and response of DNA repair machinery.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"5131-5148.e6"},"PeriodicalIF":8.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell biology: Wanderers that balloon towards light. 细胞生物学向光飞行的漫游者
IF 8.1 1区 生物学
Current Biology Pub Date : 2024-11-18 DOI: 10.1016/j.cub.2024.10.002
Clotilde Cadart
{"title":"Cell biology: Wanderers that balloon towards light.","authors":"Clotilde Cadart","doi":"10.1016/j.cub.2024.10.002","DOIUrl":"https://doi.org/10.1016/j.cub.2024.10.002","url":null,"abstract":"<p><p>Non-swimming plankton must maintain their vertical position in the ocean to ensure appropriate energy input from the sun. A new study reveals that they achieve this by regulating their buoyancy through a process of cellular inflation promptly after cell division.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":"34 22","pages":"R1139-R1141"},"PeriodicalIF":8.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inflation-induced motility for long-distance vertical migration. 充气诱导运动,促进长距离垂直迁移。
IF 8.1 1区 生物学
Current Biology Pub Date : 2024-11-18 Epub Date: 2024-10-17 DOI: 10.1016/j.cub.2024.09.046
Adam G Larson, Rahul Chajwa, Hongquan Li, Manu Prakash
{"title":"Inflation-induced motility for long-distance vertical migration.","authors":"Adam G Larson, Rahul Chajwa, Hongquan Li, Manu Prakash","doi":"10.1016/j.cub.2024.09.046","DOIUrl":"10.1016/j.cub.2024.09.046","url":null,"abstract":"<p><p>The vertical migrations of pelagic organisms play a crucial role in shaping marine ecosystems and influencing global biogeochemical cycles. They also form the foundation of what might be the largest daily biomass movement on Earth. Surprisingly, among this diverse group of organisms, some single-cell protists can transit depths exceeding 50 m without employing flagella or cilia. How these non-motile cells perform large migrations remains unknown. It has been previously proposed that this capability might rely on the cell's ability to regulate its internal density relative to seawater. Here, using the dinoflagellate algae Pyrocystis noctiluca as a model system, we discover a rapid cell inflation event post cell division, during which a single plankton cell expands its volume 6-fold in less than 10 min. We demonstrate this rapid cellular inflation is the primary mechanism of density control. This self-regulated cellular inflation selectively imports fluid less dense than surrounding seawater and can thus effectively sling-shot a cell and reverse sedimentation within minutes. To accommodate its dramatic cellular expansion, Pyrocystis noctiluca possesses a unique reticulated cytoplasmic architecture that enables a rapid increase in overall cell volume without diluting its cytoplasmic content. We further present a generalized mathematical framework that unifies cell-cycle-driven density regulation, stratified ecology, and associated cell behavior in the open ocean. Our study unveils an ingenious strategy employed by a non-motile plankton to evade the gravitational sedimentation trap, highlighting how precise control of cell size and cell density can enable long-distance migration in the open ocean.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"5149-5163.e3"},"PeriodicalIF":8.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-option of the trichome-forming network initiated the evolution of a morphological novelty in Drosophila eugracilis. 毛状体形成网络的共同选择引发了八哥果蝇形态新颖性的进化。
IF 8.1 1区 生物学
Current Biology Pub Date : 2024-11-18 Epub Date: 2024-10-25 DOI: 10.1016/j.cub.2024.09.073
Gavin Rice, Tatiana Gaitán-Escudero, Kenechukwu Charles-Obi, Julia Zeitlinger, Mark Rebeiz
{"title":"Co-option of the trichome-forming network initiated the evolution of a morphological novelty in Drosophila eugracilis.","authors":"Gavin Rice, Tatiana Gaitán-Escudero, Kenechukwu Charles-Obi, Julia Zeitlinger, Mark Rebeiz","doi":"10.1016/j.cub.2024.09.073","DOIUrl":"10.1016/j.cub.2024.09.073","url":null,"abstract":"<p><p>Identifying the molecular origins by which new morphological structures evolve is one of the long-standing problems in evolutionary biology. To date, vanishingly few examples provide a compelling account of how new morphologies were initially formed, thereby limiting our understanding of how diverse forms of life derived their complex features. Here, we provide evidence that the large projections on the Drosophila eugracilis phallus that are implicated in sexual conflict have evolved through the partial co-option of the trichome genetic network. These unicellular apical projections on the phallus postgonal sheath are reminiscent of trichomes that cover the Drosophila body but are up to 20-fold larger in size. During their development, they express the transcription factor Shavenbaby, the master regulator of the trichome network. Consistent with the co-option of the Shavenbaby network during the evolution of the D. eugracilis projections, somatic mosaic CRISPR-Cas9 mutagenesis shows that shavenbaby is necessary for their proper length. Moreover, misexpression of Shavenbaby in the sheath of D. melanogaster, a naive species that lacks these projections, is sufficient to induce small trichomes. These induced projections rely on a genetic network that is shared to a large extent with the D. eugracilis projections, indicating its partial co-option but also some genetic rewiring. Thus, by leveraging a genetically tractable evolutionary novelty, our work shows that the trichome-forming network is flexible enough that it can be partially co-opted in a new context and subsequently refined to produce unique apical projections that are barely recognizable compared with their simpler ancestral beginnings.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"5284-5294.e3"},"PeriodicalIF":8.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Historical invasion rates vary among insect trophic groups. 不同昆虫营养群的历史入侵率各不相同。
IF 8.1 1区 生物学
Current Biology Pub Date : 2024-11-18 Epub Date: 2024-10-22 DOI: 10.1016/j.cub.2024.09.068
Richard Mally, Rebecca M Turner, Helen F Nahrung, Takehiko Yamanaka, Gyda Fenn-Moltu, Cleo Bertelsmeier, Andrew M Liebhold
{"title":"Historical invasion rates vary among insect trophic groups.","authors":"Richard Mally, Rebecca M Turner, Helen F Nahrung, Takehiko Yamanaka, Gyda Fenn-Moltu, Cleo Bertelsmeier, Andrew M Liebhold","doi":"10.1016/j.cub.2024.09.068","DOIUrl":"10.1016/j.cub.2024.09.068","url":null,"abstract":"<p><p>Globalization has spread thousands of invasive insect species into new world regions,<sup>1</sup><sup>,</sup><sup>2</sup><sup>,</sup><sup>3</sup> causing severe losses in ecosystem services. Previous work proposed that plant invasions facilitate insect invasions through the creation of niches for non-native herbivores.<sup>3</sup><sup>,</sup><sup>4</sup><sup>,</sup><sup>5</sup><sup>,</sup><sup>6</sup> Despite the impact of insect invasions, a comprehensive understanding is lacking on how invasion success varies among insect feeding groups. We therefore compiled the predominant larval trophic groups (herbivores, predators, parasites, detritivores, and brood-carers) for 5,839 non-native insect species in nine world regions to compare (1) proportions of species in each group between non-native species and the world's fauna, (2) how invasion success for each trophic group has changed over the last three centuries, and (3) how historical herbivore invasions are related to plant invasions over time and parasite invasions are related to herbivores. We find that herbivores represent a significantly larger proportion (52.4%) among non-native insects compared with the world fauna (38.4%), whereas proportions of non-native detritivores (including fungivores), predators, and brood-carers are significantly lower; parasite proportions do not significantly differ. Predators and detritivores dominated among invasions in the 18th century but subsequently diminished, likely due to changing invasion pathways, whereas proportions of herbivores, parasites, and brood-carers increased over time. We found herbivore invasions to lag 80 years behind plant invasions, whereas parasitoids appear to co-invade with their herbivore hosts. The dominance of herbivores among non-native insects and their strong cross-correlation with plant invasions further strengthens the hypothesis that plant invasions drive the global rise in numbers of non-native insects.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"5374-5381.e3"},"PeriodicalIF":8.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The CEP peptide-CRA2 receptor module promotes arbuscular mycorrhizal symbiosis. CEP肽-CRA2受体模块促进丛枝菌根共生。
IF 8.1 1区 生物学
Current Biology Pub Date : 2024-11-18 Epub Date: 2024-10-21 DOI: 10.1016/j.cub.2024.09.058
Léa Pedinotti, Juliette Teyssendier de la Serve, Thibault Roudaire, Hélène San Clemente, Marielle Aguilar, Wouter Kohlen, Florian Frugier, Nicolas Frei Dit Frey
{"title":"The CEP peptide-CRA2 receptor module promotes arbuscular mycorrhizal symbiosis.","authors":"Léa Pedinotti, Juliette Teyssendier de la Serve, Thibault Roudaire, Hélène San Clemente, Marielle Aguilar, Wouter Kohlen, Florian Frugier, Nicolas Frei Dit Frey","doi":"10.1016/j.cub.2024.09.058","DOIUrl":"10.1016/j.cub.2024.09.058","url":null,"abstract":"<p><p>C-terminally encoded peptides (CEPs) are small secreted signaling peptides that promote nitrogen-fixing root nodulation symbiosis in legumes, depending on soil mineral nitrogen availability.<sup>1</sup> In Medicago truncatula, their action is mediated by the leucine-rich repeat receptor-like protein kinase COMPACT ROOT ARCHITECTURE 2 (CRA2).<sup>2</sup><sup>,</sup><sup>3</sup><sup>,</sup><sup>4</sup> Like most land plants, under inorganic phosphate limitation, M. truncatula establishes another root endosymbiotic interaction with arbuscular fungi, the arbuscular mycorrhizal symbiosis (AMS). Because this interaction is beneficial for the plant but has a high energetic cost, it is tightly controlled by host plants to limit fungal infections mainly depending on phosphate availability.<sup>5</sup> We show in this study that the expression of a subset of CEP-encoding genes is enhanced in the low-phosphate conditions and that overexpression of the low-phosphate-induced MtCEP1 gene, previously shown to promote the nitrogen-fixing root nodulation symbiosis, enhances AMS from the initial entry point of the fungi. Conversely, a loss-of-function mutation of the CRA2 receptor required for mediating CEP peptide action<sup>2</sup> decreases the endomycorrhizal interaction from the same initial fungal entry stage. Transcriptomic analyses revealed that the cra2 mutant is negatively affected in the regulation of key phosphate transport and response genes as well as in the biosynthesis of strigolactone hormones that are required for establishing AMS. Accordingly, strigolactone contents were drastically decreased in cra2 mutant roots. Overall, we showed that the CEP/CRA2 pathway promotes both root nodulation and AMS in legume plants, depending on soil mineral nutrient availability.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"5366-5373.e4"},"PeriodicalIF":8.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信