{"title":"Evolutionary innovations of human cerebral cortex viewed through the lens of high-throughput sequencing","authors":"Ikuo K. Suzuki","doi":"10.1002/dneu.22893","DOIUrl":"10.1002/dneu.22893","url":null,"abstract":"Humans had acquired a tremendously enlarged cerebral cortex containing a huge quantity and variety of cells during evolution. Such evolutionary uniqueness offers a neural basis of our cognitive innovation and human‐specific features of neurodevelopmental and psychiatric disorders. Since human brain is hardly examined in vivo with experimental approaches commonly applied on animal models, the recent advancement of sequencing technologies offers an indispensable viewpoint of human brain anatomy and development. This review introduces the recent findings on the unique features in the adult and the characteristic developmental processes of the human cerebral cortex, based on high‐throughput DNA sequencing technologies.","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"82 6","pages":"476-494"},"PeriodicalIF":3.0,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40408053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Auguste Vadisiute, Elise Meijer, Florina Szabó, Anna Hoerder-Suabedissen, Eri Kawashita, Shuichi Hayashi, Zoltán Molnár
{"title":"The role of snare proteins in cortical development","authors":"Auguste Vadisiute, Elise Meijer, Florina Szabó, Anna Hoerder-Suabedissen, Eri Kawashita, Shuichi Hayashi, Zoltán Molnár","doi":"10.1002/dneu.22892","DOIUrl":"10.1002/dneu.22892","url":null,"abstract":"<p>Neural communication in the adult nervous system is mediated primarily through chemical synapses, where action potentials elicit Ca<sup>2+</sup> signals, which trigger vesicular fusion and neurotransmitter release in the presynaptic compartment. At early stages of development, the brain is shaped by communication via trophic factors and other extracellular signaling, and by contact-mediated cell–cell interactions including chemical synapses. The patterns of early neuronal impulses and spontaneous and regulated neurotransmitter release guide the precise topography of axonal projections and contribute to determining cell survival. The study of the role of specific proteins of the synaptic vesicle release machinery in the establishment, plasticity, and maintenance of neuronal connections during development has only recently become possible, with the advent of mouse models where various members of the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex have been genetically manipulated. We provide an overview of these models, focusing on the role of regulated vesicular release and/or cellular excitability in synaptic assembly, development and maintenance of cortical circuits, cell survival, circuit level excitation–inhibition balance, myelination, refinement, and plasticity of key axonal projections from the cerebral cortex. These models are important for understanding various developmental and psychiatric conditions, and neurodegenerative diseases.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"82 6","pages":"457-475"},"PeriodicalIF":3.0,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9539872/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9149276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evolution of genetic mechanisms regulating cortical neurogenesis","authors":"Alexandre Espinós, Eduardo Fernández-Ortuño, Enrico Negri, Víctor Borrell","doi":"10.1002/dneu.22891","DOIUrl":"10.1002/dneu.22891","url":null,"abstract":"<p>The size of the cerebral cortex increases dramatically across amniotes, from reptiles to great apes. This is primarily due to different numbers of neurons and glial cells produced during embryonic development. The evolutionary expansion of cortical neurogenesis was linked to changes in neural stem and progenitor cells, which acquired increased capacity of self-amplification and neuron production. Evolution works via changes in the genome, and recent studies have identified a small number of new genes that emerged in the recent human and primate lineages, promoting cortical progenitor proliferation and increased neurogenesis. However, most of the mammalian genome corresponds to noncoding DNA that contains gene-regulatory elements, and recent evidence precisely points at changes in expression levels of conserved genes as key in the evolution of cortical neurogenesis. Here, we provide an overview of basic cellular mechanisms involved in cortical neurogenesis across amniotes, and discuss recent progress on genetic mechanisms that may have changed during evolution, including gene expression regulation, leading to the expansion of the cerebral cortex.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"82 5","pages":"428-453"},"PeriodicalIF":3.0,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dneu.22891","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49498401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of advances in cortical development using model systems","authors":"Patricia R. Nano, Aparna Bhaduri","doi":"10.1002/dneu.22879","DOIUrl":"10.1002/dneu.22879","url":null,"abstract":"<p>Compared with that of even the closest primates, the human cortex displays a high degree of specialization and expansion that largely emerges developmentally. Although decades of research in the mouse and other model systems has revealed core tenets of cortical development that are well preserved across mammalian species, small deviations in transcription factor expression, novel cell types in primates and/or humans, and unique cortical architecture distinguish the human cortex. Importantly, many of the genes and signaling pathways thought to drive human-specific cortical expansion also leave the brain vulnerable to disease, as the misregulation of these factors is highly correlated with neurodevelopmental and neuropsychiatric disorders. However, creating a comprehensive understanding of human-specific cognition and disease remains challenging. Here, we review key stages of cortical development and highlight known or possible differences between model systems and the developing human brain. By identifying the developmental trajectories that may facilitate uniquely human traits, we highlight open questions in need of approaches to examine these processes in a human context and reveal translatable insights into human developmental disorders.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"82 5","pages":"408-427"},"PeriodicalIF":3.0,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9835301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transcriptomic analyses of NeuroD1-mediated astrocyte-to-neuron conversion","authors":"Ning-Xin Ma, Brendan Puls, Gong Chen","doi":"10.1002/dneu.22882","DOIUrl":"10.1002/dneu.22882","url":null,"abstract":"<p>Ectopic expression of a single neural transcription factor NeuroD1 can reprogram reactive glial cells into functional neurons both in vitro and in vivo, but the underlying mechanisms are not well understood yet. Here, we used RNA-sequencing technology to capture the transcriptomic changes at different time points during the reprogramming process. We found that following NeuroD1 overexpression, astroglial genes (ACTG1, ALDH1A3, EMP1, CLDN6, SOX21) were significantly downregulated, whereas neuronal genes (DCX, RBFOX3/NeuN, CUX2, RELN, SNAP25) were significantly upregulated. NeuroD family members (NeuroD1/2/6) and signaling pathways (Wnt, MAPK, cAMP) as well as neurotransmitter receptors (acetylcholine, somatostatin, dopamine) were also significantly upregulated. Gene co-expression analysis identified many central genes among the NeuroD1-interacting network, including CABP7, KIAA1456, SSTR2, GADD45G, LRRTM2, and INSM1. Compared to chemical conversion, we found that NeuroD1 acted as a strong driving force and triggered fast transcriptomic changes during astrocyte-to-neuron conversion process. Together, this study reveals many important downstream targets of NeuroD1 such as HES6, BHLHE22, INSM1, CHRNA1/3, CABP7, and SSTR2, which may play critical roles during the transcriptomic landscape shift from a glial profile to a neuronal profile.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"82 5","pages":"375-391"},"PeriodicalIF":3.0,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dneu.22882","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42936637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In vivo glia-to-neuron conversion: pitfalls and solutions","authors":"Lei-Lei Wang, Chun-Li Zhang","doi":"10.1002/dneu.22880","DOIUrl":"10.1002/dneu.22880","url":null,"abstract":"<p>Neuron loss and disruption of neural circuits are associated with many neurological conditions. A key question is how to rebuild neural circuits for functional improvements. In vivo glia-to-neuron (GtN) conversion emerges as a potential solution for regeneration-based therapeutics. This approach takes advantage of the regenerative ability of resident glial cells to produce new neurons through cell fate reprogramming. Significant progress has been made over the years in this emerging field. However, inappropriate analysis often leads to misleading conclusions that create confusion and hype. In this perspective, we point out the most salient pitfalls associated with some recent studies and provide solutions to prevent them in the future. The goal is to foster healthy development of this promising field and lay a solid cellular foundation for future regeneration-based medicine.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"82 5","pages":"367-374"},"PeriodicalIF":3.0,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41517405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"E3 ubiquitin ligases and cerebral cortex development in health and disease","authors":"Nicolas Lambert, Martin Moïse, Laurent Nguyen","doi":"10.1002/dneu.22877","DOIUrl":"10.1002/dneu.22877","url":null,"abstract":"<p>Cerebral cortex development involves the sequential progression of biological steps driven by molecular pathways whose tight regulation often relies on ubiquitination. Ubiquitination is a posttranslational modification involved in all aspects of cellular homeostasis through the attachment of a ubiquitin (Ub) moiety on proteins. Over the past years, an increasing amount of research has highlighted the crucial role played by Ub ligases in every step of cortical development and whose impairment often leads to various neurodevelopmental disorders. In this review, we focus on the key contributions of E3 Ub ligases for the progression of the different steps of corticogenesis, as well as the pathological consequences of their mutations, often resulting in malformations of cortical development. Finally, we discuss some promising therapeutic strategies for these diseases based on recent advances in the field.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"82 5","pages":"392-407"},"PeriodicalIF":3.0,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45640611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elizabeth J. Meiman, Grace Robinson Kick, Cheryl A. Jensen, Joan R. Coates, Martin L. Katz
{"title":"Characterization of neurological disease progression in a canine model of CLN5 neuronal ceroid lipofuscinosis","authors":"Elizabeth J. Meiman, Grace Robinson Kick, Cheryl A. Jensen, Joan R. Coates, Martin L. Katz","doi":"10.1002/dneu.22878","DOIUrl":"10.1002/dneu.22878","url":null,"abstract":"<p>Golden Retriever dogs with a frameshift variant in <i>CLN5</i> (c.934_935delAG) suffer from a progressive neurodegenerative disorder analogous to the CLN5 form of neuronal ceroid lipofuscinosis (NCL). Five littermate puppies homozygous for the deletion allele were identified prior to the onset of disease signs. Studies were performed to characterize the onset and progression of the disease in these dogs. Neurological signs that included restlessness, unwillingness to cooperate with the handlers, and proprioceptive deficits first became apparent at approximately 12 months of age. The neurological signs progressed over time and by 21 to 23 months of age included general proprioceptive ataxia, menace response deficits, aggressive behaviors, cerebellar ataxia, intention tremors, decreased visual tracking, seizures, cognitive decline, and impaired prehension. Due to the severity of these signs, the dogs were euthanized between 21 and 23 months of age. Magnetic resonance imaging revealed pronounced progressive global brain atrophy with a more than sevenfold increase in the volume of the ventricular system between 9.5 and 22.5 months of age. Accompanying this atrophy were pronounced accumulations of autofluorescent inclusions throughout the brain and spinal cord. Ultrastructurally, the contents of these inclusions were found to consist primarily of membrane-like aggregates. Inclusions with similar fluorescence properties were present in cardiac muscle. Similar to other forms of NCL, the affected dogs had low plasma carnitine concentrations, suggesting impaired carnitine biosynthesis. These data on disease progression will be useful in future studies using the canine model for therapeutic intervention studies.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"82 4","pages":"326-344"},"PeriodicalIF":3.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dneu.22878","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42405973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annika Balraj, Cheryl Clarkson-Paredes, Ahdeah Pajoohesh-Ganji, Matthew W. Kay, David Mendelowitz, Robert H. Miller
{"title":"Refinement of axonal conduction and myelination in the mouse optic nerve indicate an extended period of postnatal developmental plasticity","authors":"Annika Balraj, Cheryl Clarkson-Paredes, Ahdeah Pajoohesh-Ganji, Matthew W. Kay, David Mendelowitz, Robert H. Miller","doi":"10.1002/dneu.22875","DOIUrl":"10.1002/dneu.22875","url":null,"abstract":"<p>Retinal ganglion cells generate a pattern of action potentials to communicate visual information from the retina to cortical areas. Myelin, an insulating sheath, wraps axonal segments to facilitate signal propagation and when deficient, can impair visual function. Optic nerve development and initial myelination has largely been considered completed by the fifth postnatal week. However, the relationship between the extent of myelination and axonal signaling in the maturing optic nerve is not well characterized. Here, we examine the relationship between axon conduction and elements of myelination using extracellular nerve recordings, immunohistochemistry, western blot analysis, scanning electron microscopy, and simulations of nerve responses. Comparing compound action potentials from mice aged 4–12 weeks revealed five functional distinct axonal populations, an increase in the number of functional axons, and shifts toward fast-conducting axon populations at 5 and 8 weeks postnatal. At these ages, our analysis revealed increased myelin thickness, lower g-ratios and changes in the 14 kDa MBP isoform, while the density of axons and nodes of Ranvier remained constant. At 5 postnatal weeks, axon diameter increased, while at 8 weeks, increased expression of a mature sodium ion channel subtype, Na<sub>v</sub> 1.6, was observed at nodes of Ranvier. A simulation model of nerve conduction suggests that ion channel subtype, axon diameter, and myelin thickness are more likely to be key regulators of nerve function than g-ratio. Such refinement of axonal function and myelin rearrangement identified an extended period of maturation in the normal optic nerve that may facilitate the development of visual signaling patterns.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"82 4","pages":"308-325"},"PeriodicalIF":3.0,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9372870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}