Yoshiki Hayashi, Ban Sato, Rio Kageyama, Kenji Miyado, Daisuke Saito, Satoru Kobayashi, Natsuko Kawano
{"title":"Comprehensive observation of histone lysine lactylation during gametogenesis of Drosophila melanogaster.","authors":"Yoshiki Hayashi, Ban Sato, Rio Kageyama, Kenji Miyado, Daisuke Saito, Satoru Kobayashi, Natsuko Kawano","doi":"10.1002/dvdy.70010","DOIUrl":"https://doi.org/10.1002/dvdy.70010","url":null,"abstract":"<p><strong>Background: </strong>Histone post-translational modification (PTM) is an important epigenomic regulation content and an essential process regulating gene expression. Histone lysine lactylation is the newly identified histone PTM that utilizes the lactyl moiety for its modification. Although histone lysine lactylation is considered an essential outcome of the Wardburg effects and the interconnection between cellular metabolism and gene regulation, the developmental contexts involving this PTM are largely unknown. In this study, we comprehensively observed histone lysine lactylation during Drosophila oogenesis, one of the developmental contexts in which chromatin regulation plays crucial roles.</p><p><strong>Results: </strong>Our study revealed that lactylation on the specific histone lysine mainly occurs in the oocyte karyosome and condensed meiotic chromosome, suggesting histone lysine lactylation has a vital role in female meiosis. Interestingly, one of the histone lysine lactylations, lactylation of lysine 14 of histone H3, is intensively observed in the meiotic germline in the mouse ovary, suggesting that lactylation has an evolutionarily conserved role.</p><p><strong>Conclusions: </strong>Our results revealed that histone lysine lactylation is predominantly present in transcriptionally repressive meiotic chromatin, which contradicts the previously reported function of histone lactylation in transcriptional activation. This study, therefore, provides the first fundamental information to understand the role of histone lysine lactylation in the germline and repressive chromatin.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143729298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gfi1 in the inner ear: A retrospective review.","authors":"Zhuo Li, Hongzhi Chen, Hao Feng","doi":"10.1002/dvdy.70019","DOIUrl":"https://doi.org/10.1002/dvdy.70019","url":null,"abstract":"<p><p>Gfi1 plays an important role in the development of hair cells (HCs), as indicated by its ability to regulate the expression of HC-related genes while the organ of Corti is developing. Given that the HCs and the supporting cells (SCs) are coming from a common stem/progenitor cell pool, it is conceivable to regenerate HCs from SCs that ectopically express Gfi1. The focus of this review was to elucidate the role of Gfi1 in controlling the development of HCs by dissecting the phenotypes of the inner ear in Gfi1-mutated mouse lines. In addition, we reviewed studies of regeneration in the mammalian inner ear, by which we discussed the novel function of Gfi1 as an essential factor in guiding non-HCs toward an HC destiny in coordination with Atoh1 and Pou4f3. Finally, we summarized the known Gfi1-specific Cre/CreER/reporter mouse lines and highlighted the pros and cons of each line, with the aim of providing insights for use in future studies. In summary, a better understanding of Gfi1 and its diverse roles is beneficial for advancing studies of HC regeneration in the inner ear.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143708966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhitao Ming, Fang Liu, Hannah R Moran, Robert L Lalonde, Megan Adams, Nicole K Restrepo, Parnal Joshi, Stephen C Ekker, Karl J Clark, Iddo Friedberg, Saulius Sumanas, Chunyue Yin, Christian Mosimann, Jeffrey J Essner, Maura McGrail
{"title":"Lineage labeling with zebrafish hand2 Cre and CreERT2 recombinase CRISPR knock-ins.","authors":"Zhitao Ming, Fang Liu, Hannah R Moran, Robert L Lalonde, Megan Adams, Nicole K Restrepo, Parnal Joshi, Stephen C Ekker, Karl J Clark, Iddo Friedberg, Saulius Sumanas, Chunyue Yin, Christian Mosimann, Jeffrey J Essner, Maura McGrail","doi":"10.1002/dvdy.70022","DOIUrl":"10.1002/dvdy.70022","url":null,"abstract":"<p><strong>Background: </strong>The ability to generate endogenous Cre recombinase drivers using CRISPR-Cas9 knock-in technology allows lineage tracing, cell type-specific gene studies, and in vivo validation of inferred developmental trajectories from phenotypic and gene expression analyses. This report describes endogenous zebrafish hand2 Cre and CreERT2 drivers generated with GeneWeld CRISPR-Cas9 precision targeted integration.</p><p><strong>Results: </strong>hand2-2A-cre and hand2-2A-creERT2 knock-ins crossed with ubiquitous loxP-based Switch reporters led to broad labeling in expected mesodermal and neural crest-derived lineages in branchial arches, cardiac, fin, liver, intestine, and mesothelial tissues, as well as enteric neurons. Novel patterns of hand2 lineage tracing appeared in venous blood vessels. CreERT2 induction at 24 h reveals hand2-expressing cells in the 24- to 48-h embryo contribute to the venous and intestinal vasculature. Induction in 3 dpf larvae restricts hand2 lineage labeling to mesoderm-derived components of the branchial arches, heart, liver, and enteric neurons.</p><p><strong>Conclusions: </strong>hand2 progenitors from the lateral plate mesoderm and ectoderm contribute to numerous lineages in the developing embryo. At later stages, hand2-expressing cells are restricted to a subset of lineages in the larva. The endogenous hand2 Cre and CreERT2 drivers establish critical new tools to investigate hand2 lineages in zebrafish embryogenesis and larval organogenesis.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143708972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jenna R Drummond, Raymond N Deepe, Hannah G Tarolli, Renélyn A Wolters, Inara Devji, Andrew B Harvey, Andy Wessels
{"title":"Sox9 in the second heart field and the development of the outflow tract; implications for cardiac septation and valve formation.","authors":"Jenna R Drummond, Raymond N Deepe, Hannah G Tarolli, Renélyn A Wolters, Inara Devji, Andrew B Harvey, Andy Wessels","doi":"10.1002/dvdy.70014","DOIUrl":"https://doi.org/10.1002/dvdy.70014","url":null,"abstract":"<p><strong>Background: </strong>Previously, we explored the role of Sox9 in the second heart field (SHF) in atrioventricular septation. For that study, we created a SHF-specific Sox9 knockout mouse. In addition to the presence of primary atrial septal defects in half of the offspring, we found that virtually all specimens also developed a ventricular septal defect. Histological analysis suggested that the ventricular septal defects resulted from developmental perturbation of the mesenchymal structures within the outflow tract. In the current study, we investigated the role of Sox9 in the SHF in the development of these tissues.</p><p><strong>Results: </strong>Sox9 is expressed in all mesenchymal cell populations in the developing outflow tract, including a cohort of endocardial-derived cells that originate from the SHF-derived endocardium. SHF-specific deletion of Sox9 inhibits the formation of this cell population and ultimately leads to truncation of the mesenchymal outlet septum. This prevents complete fusion of this outlet septum with the atrioventricular mesenchymal complex, resulting in ventricular septal defects.</p><p><strong>Conclusions: </strong>In combination with our first paper on the role of Sox9 in atrioventricular septation, data presented in this study demonstrate that Sox9 expression in the SHF is of critical importance for the proper formation of the septal structures in the developing heart.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143709003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrating regenerative biology with developmental psychobiology to understand behavioral recovery.","authors":"Justin A Varholick","doi":"10.1002/dvdy.70021","DOIUrl":"https://doi.org/10.1002/dvdy.70021","url":null,"abstract":"<p><p>Developmental psychobiology (DPB) is a sub-discipline of developmental biology investigating the roles of physiology, biomechanics, and the environment on behavioral development. Regenerative biology is also a sub-discipline of developmental biology, studying how tissues and organs heal and regenerate after injury. One aspect of healing and regeneration is the behavioral recovery of the whole organism, involving the nervous system and coordinated movements in three-dimensional space. Behavioral recovery is often a secondary measure in many regeneration studies, primarily focusing on molecular and cellular mechanisms involved in structural recovery. Studies and frameworks in DPB, however, suggest that behaviors may have an active role in the regeneration process, and integrating regenerative biology with DPB would provide a basis for behavioral research on regenerative systems as a separate biological question to increase our understanding of behavioral recovery. Here, I introduce the probabilistic epigenesis framework from DPB and elaborate on how it reveals gaps in our knowledge concerning regeneration and behavioral recovery. I close with an initial regenerative history framework to guide regenerative biologists and bioengineers studying behavioral recovery to address these gaps and optimize behavioral recovery with regenerating tissue.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143699978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anita Dittrich, Sofie Amalie Andersson, Morten Busk, Kasper Hansen, Casper Bindzus Foldager, Johan Palmfeldt, Asger Andersen, Michael Pedersen, Mikkel Vendelbo, Kirstine Lykke Nielsen, Henrik Lauridsen
{"title":"Metabolic changes during cardiac regeneration in the axolotl.","authors":"Anita Dittrich, Sofie Amalie Andersson, Morten Busk, Kasper Hansen, Casper Bindzus Foldager, Johan Palmfeldt, Asger Andersen, Michael Pedersen, Mikkel Vendelbo, Kirstine Lykke Nielsen, Henrik Lauridsen","doi":"10.1002/dvdy.70020","DOIUrl":"https://doi.org/10.1002/dvdy.70020","url":null,"abstract":"<p><strong>Background: </strong>The axolotl is a prominent model organism of heart regeneration due to its ability to anatomically and functionally repair the heart after an injury that mimics human myocardial infarction. In humans, such an injury leads to permanent scarring. Cardiac regeneration has been linked to metabolism and the oxygenation state, but so far, these factors remain to be detailed in the axolotl model. In this descriptive study, we have investigated metabolic changes that occurred during cardiac regeneration in the axolotl.</p><p><strong>Results: </strong>We describe systemic and local cardiac metabolic changes after injury involving an early upregulation of glucose uptake and nucleotide biosynthesis followed by a later increase in acetate uptake. We detect several promising factors and metabolites for future studies and show that, unlike other popular animal models capable of intrinsic regeneration, the axolotl maintains its cardiac regenerative ability under hyperoxic conditions.</p><p><strong>Conclusions: </strong>Axolotls undergo dynamic metabolic changes during the process of heart regeneration and display a robust reparative response to cardiac cryo-injury, which is unaffected by hyperoxia.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143676914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"LncRNA SNHG1 regulates muscle stem cells fate through Wnt/β-catenin pathway.","authors":"Changying Wang, Wenwen Wu, Junyi Chen, Heng Wang, Pengxiang Zhao","doi":"10.1002/dvdy.70017","DOIUrl":"https://doi.org/10.1002/dvdy.70017","url":null,"abstract":"<p><strong>Background: </strong>Skeletal muscle stem cells (MuSCs) played an important role in maintaining the proper function of muscle tissues. In adults, they normally remained in a quiescent state and activated upon stimulation to undergo self-renewal or myogenic differentiation. This process was complexly regulated by cytokines, and the molecular mechanisms that promoted MuSCs activation remained largely unknown.</p><p><strong>Results: </strong>Here, we analyzed transcriptome data from MuSCs activated by different stimuli using weighted gene co-expression network analysis (WGCNA) and identified the key long non-coding RNA SNHG1 (lncSNHG1), which promotes the transition from the quiescent to the activated state of MuSCs. Overexpression of lncSNHG1 was able to promote the proliferation and differentiation of MuSCs, whereas knockdown resulted in the opposite results. Mechanistically, the disruption of the Wnt/β-catenin pathway blocked the quiescence exit induced by lncSNHG1.</p><p><strong>Conclusions: </strong>We conclude that lncSNHG1 is a key factor that promotes the transition from the quiescent to the activated state of MuSCs and promotes cell proliferation and differentiation through the Wnt/β-catenin pathway.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143673423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annemarie Jenna Carver, Martine Dunnwald, Hanna Elizabeth Stevens
{"title":"A head start: The relationship of placental factors to craniofacial and brain development.","authors":"Annemarie Jenna Carver, Martine Dunnwald, Hanna Elizabeth Stevens","doi":"10.1002/dvdy.70018","DOIUrl":"https://doi.org/10.1002/dvdy.70018","url":null,"abstract":"<p><p>In recent years, the importance of placental function for fetal neurodevelopment has become increasingly studied. This field, known as neuroplacentology, has greatly expanded possible etiologies of neurodevelopmental disorders by exploring the influence of placental function on brain development. It is also well-established that brain development is influenced by craniofacial morphogenesis. However, there is less focus on the impact of the placenta on craniofacial development. Recent research suggests the functional influence of placental nutrients and hormones on craniofacial skeletal growth, such as prolactin, growth hormone, insulin-like growth factor 1, vitamin D, sulfate, and calcium, impacting both craniofacial and brain development. Therefore, interactions between the placenta and both fetal neurodevelopment and craniofacial development likely influence the growth and morphology of the head as a whole. This review discusses the role of placental hormone production and nutrient delivery in the development of the fetal head-defined as craniofacial and brain tissue together-expanding on the more established focus on brain development to also include the skull (or cranium) and face.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143656302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neural induction: New insight into the default model and an extended four-step model in vertebrate embryos.","authors":"Mohsen Sagha","doi":"10.1002/dvdy.70002","DOIUrl":"https://doi.org/10.1002/dvdy.70002","url":null,"abstract":"<p><p>Neural induction is a process by which naïve ectodermal cells differentiate into neural progenitor cells through the inhibition of BMP signaling, a condition typically considered the \"default\" state in vertebrate embryos. Studies in vertebrate embryos indicate that active FGF/MAPK signaling reduces BMP signaling to facilitate neural induction. Consequently, I propose that FGF stimulation/BMP inhibition more accurately characterizes the default model. Initially, the neuroectoderm is instructed to differentiate into anterior forebrain tissue, with cranial signals stabilizing this outcome. Subsequently, a gradient of caudalizing signals converts the neuroectodermal cells into posterior midbrain, hindbrain, and spinal cord. Furthermore, at the caudal end of the embryo, neuromesodermal progenitor cells are destined to differentiate into both neural progenitor cells and mesodermal cells, aiding in body extension. In light of these observations, I suggest incorporating an additional step, elongation, into the conventional three-step model of neural induction. This updated model encompasses activation, stabilization, transformation, and elongation.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143656306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interspecific comparisons of anuran embryonic epidermal landscapes and energetic trade-offs in response to changes in salinity.","authors":"Kourtnie Whitfield, Erica J Crespi","doi":"10.1002/dvdy.70016","DOIUrl":"https://doi.org/10.1002/dvdy.70016","url":null,"abstract":"<p><strong>Background: </strong>Freshwater salinization is an emerging stressor in amphibian populations, and embryonic stages are most vulnerable. To better understand the variation in embryonic osmoregulation, we challenged embryos of two phylogenetically diverse anuran species, Xenopus laevis and Lithobates (Rana) sylvaticus, along a gradient of non-lethal salinities. We hypothesized embryos at higher salinities will display epidermal plasticity as a coping response and increase energy expenditure related to osmoregulation demands, thereby reducing energy for growth and development.</p><p><strong>Results: </strong>Scanning electron microscopy revealed an extra mucus-secreting cell type and higher ionocyte proportions in the X. laevis epidermis, suggesting more osmoregulatory machinery than L. sylvaticus. Under elevated salinity, X. laevis displayed greater increases in goblet cell proportions, mucus secretion, and reductions in ionocyte apical area compared with L. sylvaticus. Although both species increased oxygen consumption rates and reduced body length with elevated salinity, these effects were proportionally greater in L. sylvaticus at the highest salinity, and only this species slowed developmental rates.</p><p><strong>Conclusion: </strong>These findings support the hypothesis that frog embryos respond to salinity by altering the cellular landscape of their epidermis. We show that epidermal cell types, as well as the magnitude of epidermal plasticity and energetic trade-offs in response to salinity, vary among amphibian species.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143647400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}