Multiple gene knockouts in newts reveal novel functions of 5' Hox genes in limb development along the anterior-posterior and proximal-distal axes.

IF 1.5 3区 生物学 Q2 ANATOMY & MORPHOLOGY
Kohei Urakawa, Yu Ito, Haruka Matsubara, Ken-Ichi T Suzuki, Masatoshi Matsunami, Shuji Shigenobu, Toshinori Hayashi, Gembu Abe, Takashi Takeuchi
{"title":"Multiple gene knockouts in newts reveal novel functions of 5' Hox genes in limb development along the anterior-posterior and proximal-distal axes.","authors":"Kohei Urakawa, Yu Ito, Haruka Matsubara, Ken-Ichi T Suzuki, Masatoshi Matsunami, Shuji Shigenobu, Toshinori Hayashi, Gembu Abe, Takashi Takeuchi","doi":"10.1002/dvdy.70080","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>5' Hox genes play crucial roles in limb patterning along the proximal-distal and anterior-posterior axes in mice. However, their functional conservation across tetrapods remains unclear. We previously found that newt Hox13 is essential for digit formation during both development and regeneration. In contrast, the functions of other 5' Hox genes (Hox9-Hox12) in newts remain u[WLYJ-108]nknown. Therefore, we generated 5' Hox knockout newts (Pleurodeles waltl) using CRISPR-Cas9.</p><p><strong>Results: </strong>Individual knockouts of Hox9, Hox10, and Hox12 disrupted all respective paralogs; however, these newts displayed no apparent abnormalities in limb skeletons. In contrast, Hox11 knockout newts exhibited skeletal defects in the posterior zeugopod and autopod of both the forelimbs and hindlimbs. Moreover, compound knockouts of Hox9 and Hox10 caused substantial loss of stylopod and anterior zeugopod/autopod elements specifically in the hindlimbs.</p><p><strong>Conclusion: </strong>These findings indicate that Hox9 and Hox10 redundantly regulate stylopod formation in the hindlimbs. Furthermore, Hox9/Hox10 and Hox11 contribute to the development of the anterior and posterior regions of the zeugopod/autopod in the hindlimbs, respectively. These novel roles of 5' Hox genes identified in newts suggest the functional diversification of 5' Hox genes in tetrapod limb development.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/dvdy.70080","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: 5' Hox genes play crucial roles in limb patterning along the proximal-distal and anterior-posterior axes in mice. However, their functional conservation across tetrapods remains unclear. We previously found that newt Hox13 is essential for digit formation during both development and regeneration. In contrast, the functions of other 5' Hox genes (Hox9-Hox12) in newts remain u[WLYJ-108]nknown. Therefore, we generated 5' Hox knockout newts (Pleurodeles waltl) using CRISPR-Cas9.

Results: Individual knockouts of Hox9, Hox10, and Hox12 disrupted all respective paralogs; however, these newts displayed no apparent abnormalities in limb skeletons. In contrast, Hox11 knockout newts exhibited skeletal defects in the posterior zeugopod and autopod of both the forelimbs and hindlimbs. Moreover, compound knockouts of Hox9 and Hox10 caused substantial loss of stylopod and anterior zeugopod/autopod elements specifically in the hindlimbs.

Conclusion: These findings indicate that Hox9 and Hox10 redundantly regulate stylopod formation in the hindlimbs. Furthermore, Hox9/Hox10 and Hox11 contribute to the development of the anterior and posterior regions of the zeugopod/autopod in the hindlimbs, respectively. These novel roles of 5' Hox genes identified in newts suggest the functional diversification of 5' Hox genes in tetrapod limb development.

蝾螈的多基因敲除揭示了5' Hox基因在肢体前后轴和近端-远端轴发育中的新功能。
背景:5′Hox基因在小鼠近端-远端和前后轴的肢体模式中起重要作用。然而,它们在四足动物中的功能保护尚不清楚。我们之前发现蝾螈Hox13在发育和再生过程中对手指的形成至关重要。相比之下,其他5' Hox基因(Hox9-Hox12)在蝾螈中的功能仍然未知[WLYJ-108]。因此,我们使用CRISPR-Cas9生成了5' Hox基因敲除蝾螈(Pleurodeles waltl)。结果:Hox9、Hox10和Hox12基因的敲除破坏了所有相关的类群;然而,这些蝾螈在肢体骨骼上没有表现出明显的异常。相比之下,Hox11基因敲除蝾螈在前肢和后肢的后颌足和自足均表现出骨骼缺陷。此外,Hox9和Hox10的复合敲除导致茎突和前叉足类/自足类元素的大量缺失,特别是在后肢。结论:这些发现提示Hox9和Hox10冗余调控后肢茎柱的形成。此外,Hox9/Hox10和Hox11分别参与后肢纵足类/自足类前侧和后侧区域的发育。这些在蝾螈中发现的5' Hox基因的新作用表明,5' Hox基因在四足动物肢体发育过程中具有功能多样化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Developmental Dynamics
Developmental Dynamics 生物-发育生物学
CiteScore
5.10
自引率
8.00%
发文量
116
审稿时长
3-8 weeks
期刊介绍: Developmental Dynamics, is an official publication of the American Association for Anatomy. This peer reviewed journal provides an international forum for publishing novel discoveries, using any model system, that advances our understanding of development, morphology, form and function, evolution, disease, stem cells, repair and regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信