Cytogenetic and Genome Research最新文献

筛选
英文 中文
Radiation-Induced Gene Expression Changes Used for Biodosimetry and Clinical Outcome Prediction: Challenges and Promises. 用于生物测定和临床结果预测的辐射诱导基因表达变化:挑战与希望。
IF 1.7 4区 生物学
Cytogenetic and Genome Research Pub Date : 2023-01-01 Epub Date: 2023-05-12 DOI: 10.1159/000530947
Michael Abend, Patrick Ostheim, Matthias Port
{"title":"Radiation-Induced Gene Expression Changes Used for Biodosimetry and Clinical Outcome Prediction: Challenges and Promises.","authors":"Michael Abend, Patrick Ostheim, Matthias Port","doi":"10.1159/000530947","DOIUrl":"10.1159/000530947","url":null,"abstract":"<p><p>As the war in Ukraine progresses, the radiological and nuclear threat has never been as real as now. The formation of life-threatening acute radiation syndrome (ARS), in particular after the deployment of a nuclear weapon or an attack on a nuclear power station, must be considered realistic. ARS is caused by massive cell death, leading to functional organ deficits and, via systemic inflammatory responses, finally aggravates into multiple organ failure. As a deterministic effect, the severity of the disease dictates the clinical outcome. Hence, predicting ARS severity via biodosimetry or alternative approaches appears straightforward. Because the disease occurs delayed, therapy starting as early as possible has the most significant benefit. A clinically relevant diagnosis should be carried out within the diagnostic time window of about 3 days after exposure. Biodosimetry assays providing retrospective dose estimations within this time frame will support medical management decision-making. However, how closely can dose estimates be associated with the later developing ARS severity degrees when considering dose as one among other determinants of radiation exposure and cell death? From a clinical/triage point of view, ARS severity degrees can be further aggregated into unexposed, weakly diseased (no acute health effects expected), and strongly diseased patient groups, with the latter requiring hospitalization as well as an early and intensive treatment. Radiation-induced gene expression (GE) changes occur early after exposure and can be quickly quantified. GE can be used for biodosimetry purposes. Can GE be used to predict later developing ARS severity degrees and allocate individuals to the three clinically relevant groups as well?</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9515121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex as a Factor in Murine Radiation Research: Implications for Countermeasure Development. 小鼠辐射研究中的性别因素:对对策开发的影响》。
IF 1.7 4区 生物学
Cytogenetic and Genome Research Pub Date : 2023-01-01 Epub Date: 2023-06-22 DOI: 10.1159/000531630
Gregory P Holmes-Hampton, Vidya P Kumar, Kaylee Valenzia, Sanchita P Ghosh
{"title":"Sex as a Factor in Murine Radiation Research: Implications for Countermeasure Development.","authors":"Gregory P Holmes-Hampton, Vidya P Kumar, Kaylee Valenzia, Sanchita P Ghosh","doi":"10.1159/000531630","DOIUrl":"10.1159/000531630","url":null,"abstract":"<p><p>There is an increased threat of exposure to ionizing radiation; in the event of such exposure, the availability of medical countermeasures will be vital to ensure the protection of the population. Effective countermeasures should be efficacious across a varied population and most importantly amongst both males and females. Radiation research must be conducted in animal models which act as a surrogate for the human response. Here, we identify differences in survival in male and female C57BL/6 in both a total body irradiation (TBI) model using the Armed Forces Radiobiology Research Institute (AFRRI) 60Co source and a partial body irradiation (PBI) model using the AFRRI Linear Accelerator (LINAC) with 4 MV photons and 2.5% bone marrow shielding. In both models, we observed a higher degree of radioresistance in female animals and a corresponding radiosensitivity in males. One striking difference in male and female rodents is body size/weight and we investigated the role of pre-irradiation body weight on survivability for animals irradiated at the same dose of irradiation (8 Gy TBI, 14 Gy PBI). We found that weight does not influence survival in the TBI model and that heavier males but lighter females have increased survival in the PBI model. This incongruence in survival amongst the sexes should be taken into consideration in the course of developing radiation countermeasures for response to a mass casualty incident.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9677283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of a New Enhancer That Promotes Sox9 Expression by a Comparative Analysis of Mouse and Sry-Deficient Amami Spiny Rat. 通过对小鼠和 Sry 缺陷奄美刺鼠的比较分析,确定了促进 Sox9 表达的新增强子。
IF 1.7 4区 生物学
Cytogenetic and Genome Research Pub Date : 2023-01-01 Epub Date: 2024-01-20 DOI: 10.1159/000536408
Yurie Hirata, Shusei Mizushima, Shoichiro Mitsukawa, Masafumi Kon, Yoko Kuroki, Takamichi Jogahara, Nobuo Shinohara, Asato Kuroiwa
{"title":"Identification of a New Enhancer That Promotes Sox9 Expression by a Comparative Analysis of Mouse and Sry-Deficient Amami Spiny Rat.","authors":"Yurie Hirata, Shusei Mizushima, Shoichiro Mitsukawa, Masafumi Kon, Yoko Kuroki, Takamichi Jogahara, Nobuo Shinohara, Asato Kuroiwa","doi":"10.1159/000536408","DOIUrl":"10.1159/000536408","url":null,"abstract":"<p><strong>Introduction: </strong>Testis differentiation is initiated by the SRY gene on the Y chromosome in mammalian species. However, the Amami spiny rat, Tokudaia osimensis, lacks both the Y chromosome and the Sry gene and acquired a unique Sox9 regulatory mechanism via a male-specific duplication upstream of Sox9, without Sry. In general mammalian species, the SRY protein binds to a testis-specific enhancer to promote SOX9 gene expression. Several enhancers located upstream of Sox9/SOX9 have been reported in mice and humans. In particular, the binding of SRY to the highly conserved enhancer Enh13 is thought to be a common mechanism underlying testis differentiation and sex determination in mammals.</p><p><strong>Methods: </strong>Sequences of T. osimensis homologues of three Sox9 enhancers that were previously reported in mice, Enh8, Enh14, and Enh13, were determined. We performed in vitro assays to confirm enhancer activity involved in Sox9 regulation in T. osimensis.</p><p><strong>Results: </strong>T. osimensis Enh13 showed enhancer activity when co-transfected with NR5A1 and SOX9. Mouse Enh13 was activated by NR5A1 and SRY; however, T. osimensis Enh13 did not respond to SRY, even though the binding sites of SRY and NR5A1 were conserved. To identify the key sequence that is present in mouse but absent from T. osimensis, we performed reporter gene assays using vectors in which partial sequences of T. osimensis Enh13 were replaced with mouse sequences. For T. osimensis Enh13 in which the second half (approximately 430 bp) was replaced with the corresponding mouse sequence, activity in response to NR5A1 and SRY was recovered. Further, reporter assays revealed that multiple regions in the second half of the mouse Enh13 sequence are required for the response to NR5A1 and SRY. The latter 49 bp was particularly important and contained four binding sites for three transcription factors, POU2F1, HOXA3, and GATA1.</p><p><strong>Conclusion: </strong>We showed that there are unknown sequences responsible for the interaction between NR5A1 and SRY and mEnh13 based on comparative analyses of Sry-dependent and Sry-independent species. Our comparative analyses revealed new molecular mechanisms underlying mammalian sex determination.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139511974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Candidate Gene Expression in Regional Population and Its Relevance for Radiation Triage. 区域人群中的候选基因表达及其与辐射分流的相关性。
IF 1.7 4区 生物学
Cytogenetic and Genome Research Pub Date : 2023-01-01 Epub Date: 2023-05-30 DOI: 10.1159/000531258
Nandhini Kannan, Teena Koshy, Venkateswarlu Raavi, Emmanuel Bhaskar, Swathy Moorthy, Venkata Sai Pulivadula Mohanarangam, Satish Srinivas Kondaveeti, Shangamithra Visweswaran, Venkatachalam Perumal
{"title":"Candidate Gene Expression in Regional Population and Its Relevance for Radiation Triage.","authors":"Nandhini Kannan, Teena Koshy, Venkateswarlu Raavi, Emmanuel Bhaskar, Swathy Moorthy, Venkata Sai Pulivadula Mohanarangam, Satish Srinivas Kondaveeti, Shangamithra Visweswaran, Venkatachalam Perumal","doi":"10.1159/000531258","DOIUrl":"10.1159/000531258","url":null,"abstract":"<p><p>Quantification of gene expression signatures has been substantiated as a potential and rapid marker for radiation triage and biodosimetry during nuclear emergencies. Similar to the established biodosimetry assays, the gene expression assay has drawbacks such as being highly dynamic and transient, not specific to ionizing radiation, and also influenced by confounding factors such as gender, health status, lifestyle, and inflammation. In view of that, prior knowledge of baseline expression of certain candidate genes in a population could complement the discrimination of the unexposed from the exposed individuals without the need for individual pre-exposure controls. We intended to establish a baseline expression of reported radiation-responsive genes such as CDKN1A, DDB2, FDXR, and PCNA in the blood samples of healthy human participants and then compare it with diabetic/hypertension participants (as a chronic inflammatory condition) drawn from south Indian population. Further, we have examined the appropriateness of the assay for radiation triage-like situations; i.e., the expression profiles of those genes were examined in the participants who underwent X-ray-based medical imaging. Acute inflammation induced by lipopolysaccharide exposure in the blood significantly increased the fold expression of those genes (p &lt; 0.0001) compared to the control. Whereas the basal expression level of those genes among the participants with the inflammatory condition is marginally higher than those observed in the healthy participants; despite the excess, the fold increase in those genes between the groups did not differ significantly. Consistent with the inflammatory participants, the basal expression level of those genes in the blood sample of participants who received X-radiation during neuro-interventional and computed tomography imaging is marginally higher than those observed in the pre-exposure of respective groups. Nevertheless, the fold increase in those genes did not differ significantly as the fold change fell within the two folds. Thus, overall results suggest that the utility of CDKN1A, DDB2, FDXR, and PCNA gene expression for radiation triage specific after very low-dose radiation exposure needs to be interpreted with caution for a much more reliable triage.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9600636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome Mapping Nomenclature. 基因组测绘命名法。
IF 1.7 4区 生物学
Cytogenetic and Genome Research Pub Date : 2023-01-01 Epub Date: 2024-01-11 DOI: 10.1159/000535684
Sarah Moore, Jean McGowan-Jordan, Adam C Smith, Katrina Rack, Udo Koehler, Marian Stevens-Kroef, Hayk Barseghyan, Rashmi Kanagal-Shamanna, Ros Hastings
{"title":"Genome Mapping Nomenclature.","authors":"Sarah Moore, Jean McGowan-Jordan, Adam C Smith, Katrina Rack, Udo Koehler, Marian Stevens-Kroef, Hayk Barseghyan, Rashmi Kanagal-Shamanna, Ros Hastings","doi":"10.1159/000535684","DOIUrl":"10.1159/000535684","url":null,"abstract":"<p><strong>Background: </strong>Genome Mapping Technologies (optical and electronic) use ultra-high molecular weight DNA to detect structural variation and have application in constitutional genetic disorders, hematological neoplasms, and solid tumors. Genome mapping can detect balanced and unbalanced structural variation, copy number changes, and haplotypes. The technique is analogous to chromosomal microarray analysis, although genome mapping has the added benefit of being able to detect and ascertain the nature of more abnormalities in a single assay than array, karyotyping, or FISH alone.</p><p><strong>Key messages: </strong>This paper describes a specific nomenclature for genome mapping that can be used by diagnostic and research centers to report their findings accurately. An international nomenclature is essential for patient results to be understood by different healthcare providers as well as for clear communication in publications and consistency in databases.</p><p><strong>Summary: </strong>Genome mapping can detect aneuploidy, balanced and unbalanced structural variation, as well as copy number changes. The Standing Committee for the International System for Human Cytogenomic Nomenclature (ISCN) recognised there was a need for a specific nomenclature for genome mapping that encompasses the range of abnormalities detected by this technique. This paper explains the general principles of the nomenclature as well as giving specific ISCN examples for the different types of numerical and structural rearrangements.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138800748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding the Clinical and Molecular Spectrum of FOXG1- and ZBTB18-Associated Neurodevelopmental Disorders. 扩展FOXG1-和zbtb18相关神经发育障碍的临床和分子谱。
IF 1.7 4区 生物学
Cytogenetic and Genome Research Pub Date : 2023-01-01 Epub Date: 2023-12-06 DOI: 10.1159/000535660
Alejandro J Brea-Fernández, Federica A Souto-Trinei, Elba Iglesias, Pilar Caamaño, Berta Rodríguez Sánchez, Carmen Gómez Lado, Jesús Eiris, Montse Fernández-Prieto, Francisco Barros, Roberto J Brea, Ángel Carracedo
{"title":"Expanding the Clinical and Molecular Spectrum of FOXG1- and ZBTB18-Associated Neurodevelopmental Disorders.","authors":"Alejandro J Brea-Fernández, Federica A Souto-Trinei, Elba Iglesias, Pilar Caamaño, Berta Rodríguez Sánchez, Carmen Gómez Lado, Jesús Eiris, Montse Fernández-Prieto, Francisco Barros, Roberto J Brea, Ángel Carracedo","doi":"10.1159/000535660","DOIUrl":"10.1159/000535660","url":null,"abstract":"<p><strong>Introduction: </strong>The zinc finger BTB domain-containing protein ZBTB18 binds to FOXG1 to form a transcriptional repressive complex involved in neuronal differentiation. Disruption of the components of this complex results in chromosome 1q43-q44 deletion syndrome/intellectual developmental disorder 22 or in FOXG1 syndrome.</p><p><strong>Case presentation: </strong>This study reports on five patients with cognitive and behavioral impairment, seizures, microcephaly, and/or congenital brain abnormalities. Whole-exome sequencing identified deleterious ZBTB18 variants in three patients and deleterious FOXG1 variants in the remaining patients. We have detected a missense variant within the BTB domain of ZBTB18 in two affected monozygotic twins. In addition, we observed agenesis of the septum pellucidum in a missense FOXG1 carrier with a severe FOXG1 syndrome.</p><p><strong>Conclusion: </strong>Although the ZBTB18 zinc finger domains harbor the majority of known deleterious variants, we report a novel de novo rare missense variant within the BTB domain. The agenesis of the septum pellucidum observed in a missense FOXG1 carrier could be considered as a novel clinical feature associated with FOXG1 syndrome. The severe FOXG1 syndrome in this patient contrasts with the milder phenotype expected for a missense. Genetic or environmental factors may explain this phenotypic variability in FOXG1 syndrome.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138498011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Types and Frequencies of X Chromosome Abnormalities in Women with Reproductive Problems. 生殖问题妇女X染色体异常的类型和频率。
IF 1.7 4区 生物学
Cytogenetic and Genome Research Pub Date : 2023-01-01 Epub Date: 2023-10-03 DOI: 10.1159/000534428
Elisavet Kouvidi, Haralambia Tsarouha, Sophia Zachaki, Christina Katsidi, Hara Tsimela, Amelia Pantou, Emmanuel Kanavakis, Ariadni Mavrou
{"title":"The Types and Frequencies of X Chromosome Abnormalities in Women with Reproductive Problems.","authors":"Elisavet Kouvidi, Haralambia Tsarouha, Sophia Zachaki, Christina Katsidi, Hara Tsimela, Amelia Pantou, Emmanuel Kanavakis, Ariadni Mavrou","doi":"10.1159/000534428","DOIUrl":"10.1159/000534428","url":null,"abstract":"<p><strong>Introduction: </strong>X chromosome architecture and integrity are essential for normal ovarian function. Both numerical and structural X chromosome abnormalities play an important role in female infertility. This study aimed to determine the types and frequency of X chromosome aberrations detected in women referred for cytogenetic investigation due to reproductive problems.</p><p><strong>Methods: </strong>2,936 women (average age: 37.5 years) were enrolled in the present study. Peripheral blood karyotyping was performed by conventional cytogenetic techniques. For each woman, 20 G-banded metaphases were studied and in case of suspected mosaicism, analysis was extended to 100 metaphases.</p><p><strong>Results: </strong>2,588/2,936 (88.15%) of women had a normal karyotype (46,XX), while 348/2,936 (11.85%) had an abnormal one. Thirty-two women (1.09%) carried autosomal chromosome abnormalities and 316 (10.76%) had X chromosome rearrangements. In 311/2,936 women (10.59%), X chromosome numerical aberrations were detected (low-level mosaicism), and in 5/2,936 cases (0.17%), X structural abnormalities (two with pericentric inversion, one with Xq deletion and two 45,X mosaics, one with an Xp deletion cell line and the other with isochromosome Xq cell line). Low-level X mosaicism was a common finding in women &gt;35 years as compared to younger ones (92.93% vs. 7.07%), a finding consistent with loss of chromosome X with aging. Other X chromosome abnormalities were detected in younger women (32.3 ± 4.13 vs. 41.04 ± 4.5 years). The mean age of women with Turner-like phenotype was 28.75 ± 6.6 years.</p><p><strong>Conclusion: </strong>The study confirms that the incidence of X chromosome abnormalities is increased in women with fertility problems and that karyotype is the gold standard for their identification. Genetic counseling is recommended in these cases to provide information concerning available treatment and fertility options.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41101987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of Isolated Lymphocyte and Whole Blood-Based CBMN Assays for Radiation Triage. 基于分离淋巴细胞和全血的 CBMN 检测法在辐射分诊中的应用比较。
IF 1.7 4区 生物学
Cytogenetic and Genome Research Pub Date : 2023-01-01 Epub Date: 2023-08-12 DOI: 10.1159/000533488
Antonella Bertucci, Ruth C Wilkins, Sylvie Lachapelle, Helen C Turner, David J Brenner, Guy Garty
{"title":"Comparison of Isolated Lymphocyte and Whole Blood-Based CBMN Assays for Radiation Triage.","authors":"Antonella Bertucci, Ruth C Wilkins, Sylvie Lachapelle, Helen C Turner, David J Brenner, Guy Garty","doi":"10.1159/000533488","DOIUrl":"10.1159/000533488","url":null,"abstract":"<p><p>Following a mass-casualty nuclear/radiological event, there will be an important need for rapid and accurate estimation of absorbed dose for biological triage. The cytokinesis-block micronucleus (CBMN) assay is an established and validated cytogenetic biomarker used to assess DNA damage in irradiated peripheral blood lymphocytes. Here, we describe an intercomparison experiment between two biodosimetry laboratories, located at Columbia University (CU) and Health Canada (HC) that performed different variants of the human blood CBMN assay to reconstruct dose in human blood, with CU performing the assay on isolated lymphocytes and using semi-automated scoring whereas HC used the more conventional whole blood assay. Although the micronucleus yields varied significantly between the two assays, the predicted doses closely matched up to 4 Gy - the range from which the HC calibration curve was previously established. These results highlight the importance of a robust calibration curve(s) across a wide age range of donors that match the exposure scenario as closely as possible and that will account for differences in methodology between laboratories. We have seen that at low doses, variability in the results may be attributed to variation in the processing while at higher doses the variation is dominated by inter-individual variation in cell proliferation. This interlaboratory collaboration further highlights the usefulness of the CBMN endpoint to accurately reconstruct absorbed dose in human blood after ionizing radiation exposure.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10859551/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9980964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The NIAID/RNCP Biodosimetry Program: An Overview. NIAID/RNCP生物剂量测定计划:综述。
IF 1.7 4区 生物学
Cytogenetic and Genome Research Pub Date : 2023-01-01 Epub Date: 2023-09-22 DOI: 10.1159/000534213
Merriline M Satyamitra, David R Cassatt, Olivia Molinar-Inglis, Carmen I Rios, Lanyn P Taliaferro, Thomas A Winters, Andrea L DiCarlo
{"title":"The NIAID/RNCP Biodosimetry Program: An Overview.","authors":"Merriline M Satyamitra, David R Cassatt, Olivia Molinar-Inglis, Carmen I Rios, Lanyn P Taliaferro, Thomas A Winters, Andrea L DiCarlo","doi":"10.1159/000534213","DOIUrl":"10.1159/000534213","url":null,"abstract":"<p><p>Established in 2004, the Radiation and Nuclear Countermeasures Program (RNCP), within the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health has the central mission to advance medical countermeasure mitigators/therapeutics, and biomarkers and technologies to assess, triage, and inform medical management of patients experiencing acute radiation syndrome and/or the delayed effects of acute radiation exposure. The RNCP biodosimetry mission space encompasses: (1) basic research to elucidate novel approaches for rapid and accurate assessment of radiation exposure, (2) studies to support advanced development for US Food and Drug Administration (FDA) clearance of promising triage or treatment devices/approaches, (3) characterization of biomarkers and/or assays to determine degree of tissue or organ dose that can predict outcome of radiation injuries (i.e., organ failure, morbidity, and/or mortality), and (4) outreach efforts to facilitate interactions with researchers developing cutting edge biodosimetry approaches. Thus far, no biodosimetry device has been FDA cleared for use during a radiological/nuclear incident. At NIAID, advancement of radiation biomarkers and biodosimetry approaches is facilitated by a variety of funding mechanisms (grants, contracts, cooperative and interagency agreements, and Small Business Innovation Research awards), with the objective of advancing devices and assays toward clearance, as outlined in the FDA's Radiation Biodosimetry Medical Countermeasure Devices Guidance. The ultimate goal of the RNCP biodosimetry program is to develop and establish accurate and reliable biodosimetry tools that will improve radiation preparedness and ultimately save lives during a radiological or nuclear incident.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10946631/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41116381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomarkers for Biodosimetry and Their Role in Predicting Radiation Injury. 生物模拟的生物标志物及其在预测辐射损伤中的作用。
IF 1.7 4区 生物学
Cytogenetic and Genome Research Pub Date : 2023-01-01 Epub Date: 2023-06-07 DOI: 10.1159/000531444
Molykutty Aryankalayil, Michelle A Bylicky, Sunita Chopra, Juan Dalo, Kevin Scott, Yuki Ueda, C Norman Coleman
{"title":"Biomarkers for Biodosimetry and Their Role in Predicting Radiation Injury.","authors":"Molykutty Aryankalayil, Michelle A Bylicky, Sunita Chopra, Juan Dalo, Kevin Scott, Yuki Ueda, C Norman Coleman","doi":"10.1159/000531444","DOIUrl":"10.1159/000531444","url":null,"abstract":"<p><p>Radiation-related normal tissue injury sustained during cancer radiotherapy or in a radiological or mass casualty nuclear incident is a major health concern. Reducing the risk and mitigating consequences of radiation injury could have a broad impact on cancer patients and citizens. Efforts to discover biomarkers that can determine radiation dose, predict tissue damage, and aid medical triage are underway. Exposure to ionizing radiation causes changes in gene, protein, and metabolite expression that needs to be understood to provide a holistic picture for treating acute and chronic radiation-induced toxicities. We present evidence that both RNA (mRNA, microRNA, long noncoding RNA) and metabolomic assays may provide useful biomarkers of radiation injury. RNA markers may provide information on early pathway alterations after radiation injury that can predict damage and implicate downstream targets for mitigation. In contrast, metabolomics is impacted by changes in epigenetics, genetics, and proteomics and can be considered a downstream marker that incorporates all these changes to provide an assessment of what is currently happening within an organ. We highlight research from the past 10 years to understand how biomarkers may be used to improve personalized medicine in cancer therapy and medical decision-making in mass casualty scenarios.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10946629/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9589980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信