Yi Wang, Yiming Weng, Yanqiu Wang, Jun Xiang, Wei Le
{"title":"Study on DNA Damage Gene in Spermatogonial Stem Cells from Idiopathic Nonobstructive Azoospermia: A Bioinformatics Investigation Based on scRNA-seq Data.","authors":"Yi Wang, Yiming Weng, Yanqiu Wang, Jun Xiang, Wei Le","doi":"10.1159/000545275","DOIUrl":"10.1159/000545275","url":null,"abstract":"<p><strong>Introduction: </strong>DNA damage may affect homeostasis on spermatogonial stem cells (SSCs), while the detailed relationship with male infertility still remains unclear. Therefore, it is important for further research into the mechanisms related to DNA damage and genomic stability in SSCs.</p><p><strong>Methods: </strong>scRNA-seq datasets from idiopathic nonobstructive azoospermia (NOA) and normal testes were collected and testicular cells were further annotated via UMAP. Based on annotation of the sequencing data, WGCNA analysis on the differentially expressed genes was conducted; LASSO regression and the MNC calculation algorithm in Cytoscape were carried out to find genes associated with DNA damage repair.</p><p><strong>Results: </strong>It was found that SSCs were mainly concentrated in normal samples, and the differences in subcluster pathways reflected the heterogeneity of NOA. While the characteristics of the interaction between Leydig cells and other cells were clarified, the importance of the PTN signaling pathway in SSCs development was discovered, which participates in SSCs development through SDC2. Combining the marker genes of SSCs and DNA damage-related genes in single-cell analysis, a PPI network was constructed. Through LASSO regression and the MNC calculation algorithm in Cytoscape, ATRX, DOT1L, and RUVBL2 were finally identified as key diagnostic genes.</p><p><strong>Conclusion: </strong>Our results revealed predictable mechanisms of testicular micro-environment and DNA damage in the regulation of human SSCs and propose potential therapeutic targets for male infertility. Subsequently, further research to confirm the predicted potential mechanisms, pathways, and therapeutic targets should be conducted.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":" ","pages":"9-22"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143656365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Karyotype and Repetitive DNA Analysis in Turcichondrostoma fahirae (Cypriniformes, Leuciscidae): A Step toward the Use of Molecular Cytogenetics in Taxonomy of Freshwater Fishes in Türkiye.","authors":"Güldane Gözen Tavşan, Atilla Arslan, Büşra Özçay Ekşi, Zafer Alpaslan, Emine Arslan, Alexandr Sember","doi":"10.1159/000544909","DOIUrl":"10.1159/000544909","url":null,"abstract":"<p><strong>Introduction: </strong>Türkiye houses rich freshwater ichthyofauna with many endemic species. This diversity, however, poses taxonomic challenges and leads to ongoing re-evaluations of various fish genera and species. Here, we sought to analyze the karyotype and other chromosomal characteristics of the newly erected monotypic genus Turcichondrostoma to produce and validate cytogenetic markers potentially informative for future comparative studies.</p><p><strong>Methods: </strong>We examined an endemic species Turcichondrostoma fahirae (Tefenni nase) using conventional karyotyping and chromosome banding procedures (C-, fluorescent, and silver-nitrate banding/staining), as well as chromosomal mapping of 5S/18S ribosomal DNA (rDNA), U1/U2 small nuclear DNA (snDNA), and telomeric repeats.</p><p><strong>Results: </strong>A diploid chromosome number (2n) of T. fahirae was 50, consistent with conservative leuciscid pattern. The karyotype was composed of 12 metacentric, 22 submetacentric, 10 subtelocentric, and 6 acrocentric chromosomes. Low amount of constitutive heterochromatin was distributed almost exclusively across the pericentromeric regions of all chromosomes, with the most prominent C-bands being placed on a single chromosome pair carrying nucleolar organizer region (NOR). NORs (visualized consistently by silver-nitrate staining, chromomycin A3, and fluorescence in situ hybridization) exhibited marked size heteromorphism and were adjacent to a more centromere-proximal 5S rDNA site on the long arm. Additional 5S rDNA clusters occupied short arms of four acrocentric chromosomes, and another single subtelocentric pair carried a single co-localized U1/U2 snDNA site. No interstitial telomeric sequences were detected.</p><p><strong>Conclusion: </strong>We performed a pioneer molecular cytogenetic study in Turkish freshwater fish species and our data suggest that molecular cytogenetic markers will aid in future taxonomic comparisons. Our findings further corroborate conserved karyotype structure of leuciscid fishes in general.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":" ","pages":"39-50"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143771494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Familial Case of 1q31.2q32.2 Deletion with No Phenotypic Presentation.","authors":"Rebecca Littlefield, Jennifer Weiss, Anna Zakas","doi":"10.1159/000543937","DOIUrl":"10.1159/000543937","url":null,"abstract":"<p><strong>Introduction: </strong>Deletions of the interstitial region of chromosome 1q are rare and associated with clinical features including growth restriction, developmental delays, and dysmorphic features. Here, we describe an asymptomatic family with an interstitial 1q31 deletion found incidentally.</p><p><strong>Case presentation: </strong>A 42-year-old male presented with concerns for colonic polyps and underwent multigene panel analysis for hereditary tumor predisposition syndromes which identified a full-gene deletion of CDC73.</p><p><strong>Conclusion: </strong>Microarray analysis of peripheral blood DNA showed a 6.9-Mb heterozygous deletion of 1q31.2q32.2 encompassing 33 genes in both proband and daughter. The absence of symptoms, including any autosomal dominant conditions associated with variants in this region, has been identified in only 1 case report while most other cases of 1q31 deletions report a range of clinical presentations. Further description of 1q31 deletions is essential to the development of genotype-phenotype interpretation and to decrease the uncertainty of care recommendations for patients and their families.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":" ","pages":"23-30"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143514405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Detection and Genetic Analysis of Small Supernumerary Marker Chromosomes in Prenatal Diagnosis.","authors":"Jiangfeng Qin, Yanfei Zeng, Yinghua Luo, Biyu Lu, Jiaolian Ya, Pengfei Cai, Ling Zhang, Yan Mei, Dejian Yuan, Xiaoni Wei, Yuchan Xu","doi":"10.1159/000546051","DOIUrl":"10.1159/000546051","url":null,"abstract":"<p><strong>Introduction: </strong>Small supernumerary marker chromosomes (sSMCs) are small structurally abnormal chromosomes whose origin and structure are difficult to determine by conventional cytogenetic banding techniques. The aims of the study were to analyze sSMCs discovered in prenatal diagnosis, explore the origin and clinical significance of fetal sSMCs, and inform genetic counseling and reproductive health care.</p><p><strong>Methods: </strong>Karyotyping was performed on pregnant women who underwent prenatal diagnosis in a Chinese hospital between April 2018 and April 2024. The sSMC cases encountered were further analyzed using copy number variation sequencing (CNV-seq) to determine the origin of the sSMCs and assess their clinical significance. Uniparental disomy (UPD) was excluded in the families with de novo sSMC cases using multiplex fluorescence PCR and capillary electrophoresis.</p><p><strong>Results: </strong>Out of 30,114 prenatal samples, 30 cases of sSMCs were identified, yielding a detection rate of 0.10%. Family analysis was performed on 23 of these cases, revealing 4 cases inherited and 19 cases of de novo aberrations. CNV-seq was conducted on 27 cases, with 14 showing no abnormalities and 13 exhibiting CNVs. Among the 10 cases where the origin of the sSMC was clearly identified, the duplications involved chromosomes 4, 10, 12, 15, 18, X, and Y, with pathogenic CNVs accounting for 70.0% (7/10) and variants of uncertain clinical significance accounting for 30.0% (3/10). Out of the 30 women with sSMCs detected, 13 chose to terminate the pregnancy, representing 43.3% (13/30). A follow-up was conducted on 13 de novo sSMC cases that were negative for CNV-seq. Among the live-born fetuses, all except one, who presented with speech delay, showed normal clinical features. UPD testing was successfully performed on 3 families (including the 3-year-old girl with speech delay), and all results were negative.</p><p><strong>Conclusion: </strong>Utilizing both karyotyping and molecular genetic testing is advantageous for effectively screening and identifying sSMCs. CNV-seq is recommended as an important supplementary method for sSMC identification, thereby providing more detailed genetic counseling for prenatal diagnosis.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":" ","pages":"70-84"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143987128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elisavet Kouvidi, Georgios Boutsikas, Theofanis Giannikos, Marina Kalomoiraki, Ioanna Haralampous, Dimitra Boulari, Maria Dandoulaki, Maria Roumelioti, Paschalina Pallaki, Ioannis Anagnostopoulos
{"title":"Jumping Translocation of 3q in a Patient with Mantle Cell Lymphoma: A Case Report and Review of the Literature.","authors":"Elisavet Kouvidi, Georgios Boutsikas, Theofanis Giannikos, Marina Kalomoiraki, Ioanna Haralampous, Dimitra Boulari, Maria Dandoulaki, Maria Roumelioti, Paschalina Pallaki, Ioannis Anagnostopoulos","doi":"10.1159/000546297","DOIUrl":"10.1159/000546297","url":null,"abstract":"<p><strong>Introduction: </strong>Jumping translocations are rare cytogenetic events in hematologic malignancies, involving nonreciprocal translocation of a donor chromosome onto two or more recipient chromosomes.</p><p><strong>Case presentation: </strong>In this paper, we report the first-ever case of a jumping translocation involving the long arm of chromosome 3 in a patient with mantle cell lymphoma. The basic clone had the translocation t(11;14)(q13;q32) and a der(13)t(3;13)(q12;p11), and the three subclones had an additional jumping translocation, involving the translocation of 3q12 onto recipient chromosomes 14p, 15p, and der(14)t(11;14), thus resulting in partial trisomy and tetrasomy 3q.</p><p><strong>Conclusion: </strong>Although the underlying mechanism for the formation of jumping translocations is not well understood, their presence is usually associated with poor prognosis and clonal evolution and additional data are needed for their better clinical management.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":" ","pages":"85-92"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143995080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ACAN Repeat Number Polymorphism in Patients with Idiopathic Short Stature.","authors":"Sayuri Nakamura, Yoko Kuroki, Kyongsun Pak, Tsutomu Kamimaki, Takahiro Mochizuki, Akira Ishiguro, Maki Fukami","doi":"10.1159/000545736","DOIUrl":"10.1159/000545736","url":null,"abstract":"<p><strong>Introduction: </strong>Idiopathic short stature (ISS) refers to non-syndromic growth failure without chronic disorders. The molecular basis of ISS remains largely unknown. Although a variable number of tandem repeats (VNTR) of 57 nucleotides in ACAN is known to correlate with the height of people in the general population, the role of this genetic variant in the etiology of ISS has not been studied.</p><p><strong>Methods: </strong>We studied 128 Japanese patients with ISS, including 63 patients with prenatal and postnatal growth failure (small-for-gestational age-SS [SGA-SS]), and 100 control individuals. To examine the repeat numbers of ACAN VNTR, we amplified the VNTR-containing genomic region and analyzed the PCR products by gel electrophoresis. The accuracy of the results was confirmed by long-read next-generation sequencing.</p><p><strong>Results: </strong>The repeat numbers of the patient group were similarly distributed to those of the control group, and no patient had a very small number. Moreover, the repeat numbers of the shorter and longer alleles in each individual, as well as the average number of the two alleles, were comparable between the two groups. The height standard deviation scores obtained from 106 patients did not correlate with the repeat numbers. There was no difference in the repeat numbers between the SGA-SS or non-SGA ISS groups, and the control group.</p><p><strong>Conclusion: </strong>The results of this study indicate that reduced repeat numbers of ACAN VNTR do not represent a monogenic cause or a major contributing factor for ISS. Our findings await further validation.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":" ","pages":"51-56"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12237279/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144301347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ülkü Nur Kırman, Ferid Aliyev, Merve Soğukpınar, Pelin Özlem Şimşek Kiper, Hayrettin Hakan Aykan, Hasan Tolga Çelik
{"title":"Complex Congenital Cardiac Defect Associated with the Combination of 5p Deletion and 4q Duplication in a Newborn: A Case Report.","authors":"Ülkü Nur Kırman, Ferid Aliyev, Merve Soğukpınar, Pelin Özlem Şimşek Kiper, Hayrettin Hakan Aykan, Hasan Tolga Çelik","doi":"10.1159/000543591","DOIUrl":"10.1159/000543591","url":null,"abstract":"<p><strong>Introduction: </strong>Congenital cardiac defects are defined in cases with the deletion of the short arm of chromosome 5 and the duplication of the long arm of chromosome 4. Septal defects and patent ductus arteriosus are among the most common defects reported in the literature.</p><p><strong>Case presentation: </strong>We reported on a case with a complex congenital cardiac defect, dysmorphic facial features, cat-like cry, hypotonia, hyporeflexia, weak swallowing and sucking, limb anomalies, and bilateral undescended testicles. A chromosomal microarray (CMA) revealed a duplication of chromosome 4q26q35.2 and a deletion of chromosome 5p15.33p14.3, originating from the balanced maternal translocation 46,XX,t(4;5)(q27;pter). Our patient showed clinical characteristics compatible with both deletion of 5p and duplication of 4q.</p><p><strong>Conclusion: </strong>We reported a case with a rare chromosomal rearrangement. Similarities and differences between the cases in the literature are discussed. CMA is important to detect multiple copy number variations and genes may be involved. Studies are needed to investigate the genetic and/or epigenetic causes resulting in the clinical findings seen in the combination of deletion of chromosome 5p and duplication of chromosome 4q.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":" ","pages":"31-38"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ISCN 2024: Summary of Revisions and New Nomenclature.","authors":"Nicole L Chia, Sarah Moore, Ros J Hastings","doi":"10.1159/000544969","DOIUrl":"10.1159/000544969","url":null,"abstract":"<p><p>The International Standing Committee on Human Cytogenomic Nomenclature (ISCN SC) considered feedback from the cytogenomics community to provide a more user friendly and organized presentation of general rules, improved example descriptions, more representative examples, and additional abbreviations. The ISCN 2024 edition represents one of the most significant reviews. Nomenclature for describing the findings of genomic mapping has been included for the first time. A key achievement of the Committee in preparing the ISCN 2024 is the provision of standardized nomenclature to ensure consistency in the ISCN description of findings irrespective of the cytogenomic technology used. This report highlights the main changes in the ISCN 2024 compared to previous editions and is a guide to assist in the transition to its implementation as the current nomenclature for describing cytogenomic findings.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":" ","pages":"1-8"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143751559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}