Designed Monomers and Polymers最新文献

筛选
英文 中文
Large-scale synthesis of polydimethylsiloxane as vitreous replacement applications. 大规模合成聚二甲基硅氧烷作为玻璃体替代品的应用。
IF 1.8 4区 化学
Designed Monomers and Polymers Pub Date : 2025-01-08 eCollection Date: 2025-01-01 DOI: 10.1080/15685551.2024.2449442
Ajrina Nur Shabrina, Diba Grace Auliya, Risdiana, Lusi Safriani
{"title":"Large-scale synthesis of polydimethylsiloxane as vitreous replacement applications.","authors":"Ajrina Nur Shabrina, Diba Grace Auliya, Risdiana, Lusi Safriani","doi":"10.1080/15685551.2024.2449442","DOIUrl":"10.1080/15685551.2024.2449442","url":null,"abstract":"<p><p>Polydimethylsiloxane (PDMS) is a polymer that can be used as a vitreous substitute. To fulfill the need for PDMS on a large scale, synthesis of PDMS in a large number is also needed. Therefore, intensive research is needed to produce PDMS in large quantities. This study reported that the result of the synthesis of PDMS on a scale three and five times larger than the lab-scale using a ring-opening polymerization method with octamethylcyclotetrasiloxane (D4) as a monomer and hexamethyldisiloxane as a chain terminator by increasing the volume of raw materials and reactors. The viscosity of PDMS obtained is in the ranges of 1000-3700 mPa.s for lab-scale, 1130-3590 mPa.s for three times scale-up, and 1270-4320 for five times scale-up. The obtained refractive index ranges from 1.3982 to 1.4008 and the surface tension ranges from 20 to 21 mN/m. From FTIR measurements, the synthesized PDMS from lab-scale and scale-up had structural and functional groups similar to commercial PDMS, showing that PDMS has been successfully synthesized.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"28 1","pages":"1-6"},"PeriodicalIF":1.8,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721900/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142970088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanically stable polymer networks incorporating polymeric ionic liquids for enhanced conductivity in solid-state electrolytes. 结合聚合物离子液体的机械稳定聚合物网络,增强固态电解质的导电性。
IF 1.8 4区 化学
Designed Monomers and Polymers Pub Date : 2025-01-07 eCollection Date: 2025-01-01 DOI: 10.1080/15685551.2024.2449444
Sezer Özenler, Nataliya Kiriy, Upenyu L Muza, Martin Geisler, Anton Kiriy, Brigitte Voit
{"title":"Mechanically stable polymer networks incorporating polymeric ionic liquids for enhanced conductivity in solid-state electrolytes.","authors":"Sezer Özenler, Nataliya Kiriy, Upenyu L Muza, Martin Geisler, Anton Kiriy, Brigitte Voit","doi":"10.1080/15685551.2024.2449444","DOIUrl":"10.1080/15685551.2024.2449444","url":null,"abstract":"<p><p>Enhancing both ionic conductivity and mechanical robustness remains a major challenge in designing solid-state electrolytes for lithium batteries. This work presents a novel approach in designing mechanically robust and highly conductive solid-state electrolytes, which involves ionic liquid-based cross-linked polymer networks incorporating polymeric ionic liquids (PILs). First, linear PILs with different side groups were synthesized for optimizing the structure. Molecular weights of the PIL samples, ranging from 30 to 40 kDa, were determined using a complimentary combination of thermal field-flow fractionation (ThFFF) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. The aimed for networks were synthesized through the photo-initiated polymerization of a network-forming monomer and a cross-linker, in the presence of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and a PIL bearing quaternized imidazolium groups. The resulting cross-linked membranes - semi-interpenetrating networks - exhibit substantial mechanical strength, with a Young's modulus of 40-50 MPa, surpassing the threshold for solid-state battery separators, while maintaining high ionic conductivity in the range of 4 × 10<sup>-4</sup> S·cm<sup>-1</sup> at 60°C. Notably, the introduction of oligo(ethylene glycol) moieties into the PIL structure significantly enhances ionic conductivity and allows for incorporation of a larger amount of the lithium salt compared to the alkyl-substituted analogs. Moreover, although cross-linking often impairs ionic transport as a result of restricted segmental mobility of the polymer chains, incorporation into the network of highly conductive linear PILs circumvents this issue. This unique combination of properties positions the developed membranes as promising candidates for application in solid-state lithium batteries, effectively addressing the traditional trade-off in electrolyte design.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"28 1","pages":"35-47"},"PeriodicalIF":1.8,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721619/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142970089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in bio-polymer coatings for probiotic microencapsulation: chitosan and beyond for enhanced stability and controlled release. 微胶囊益生菌用生物聚合物涂层的研究进展:壳聚糖及壳聚糖外膜增强稳定性和控释。
IF 1.8 4区 化学
Designed Monomers and Polymers Pub Date : 2024-12-31 eCollection Date: 2025-01-01 DOI: 10.1080/15685551.2024.2448122
Great Iruoghene Edo, Alice Njolke Mafe, Nawar F Razooqi, Ebuka Chukwuma Umelo, Tayser Sumer Gaaz, Endurance Fegor Isoje, Ufuoma Augustina Igbuku, Patrick Othuke Akpoghelie, Rapheal Ajiri Opiti, Arthur Efeoghene Athan Essaghah, Dina S Ahmed, Huzaifa Umar, Dilber Uzun Ozsahin
{"title":"Advances in bio-polymer coatings for probiotic microencapsulation: chitosan and beyond for enhanced stability and controlled release.","authors":"Great Iruoghene Edo, Alice Njolke Mafe, Nawar F Razooqi, Ebuka Chukwuma Umelo, Tayser Sumer Gaaz, Endurance Fegor Isoje, Ufuoma Augustina Igbuku, Patrick Othuke Akpoghelie, Rapheal Ajiri Opiti, Arthur Efeoghene Athan Essaghah, Dina S Ahmed, Huzaifa Umar, Dilber Uzun Ozsahin","doi":"10.1080/15685551.2024.2448122","DOIUrl":"https://doi.org/10.1080/15685551.2024.2448122","url":null,"abstract":"<p><p>This review paper analyzes recent advancements in bio-polymer coatings for probiotic microencapsulation, with a particular emphasis on chitosan and its synergistic combinations with other materials. Probiotic microencapsulation is essential for protecting probiotics from environmental stresses, enhancing their stability, and ensuring effective delivery to the gut. The review begins with an overview of probiotic microencapsulation, highlighting its significance in safeguarding probiotics through processing, storage, and gastrointestinal transit. Advances in chitosan-based encapsulation are explored, including the integration of chitosan with other bio-polymers such as alginate, gelatin, and pectin, as well as the application of nanotechnology and innovative encapsulation techniques like spray drying and layer-by-layer assembly. Detailed mechanistic insights are integrated, illustrating how chitosan influences gut microbiota by promoting beneficial bacteria and suppressing pathogens, thus enhancing its role as a prebiotic or synbiotic. Furthermore, the review delves into chitosan's immunomodulatory effects, particularly in the context of inflammatory bowel disease (IBD) and autoimmune diseases, describing the immune signaling pathways influenced by chitosan and linking gut microbiota changes to improvements in systemic immunity. Recent clinical trials and human studies assessing the efficacy of chitosan-coated probiotics are presented, alongside a discussion of practical applications and a comparison of in vitro and in vivo findings to highlight real-world relevance. The sustainability of chitosan sources and their environmental impact are addressed, along with the novel concept of chitosan's role in the gut-brain axis. Finally, the review emphasizes future research needs, including the development of personalized probiotic therapies and the exploration of novel bio-polymers and encapsulation techniques.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"28 1","pages":"1-34"},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703421/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication and in vitro evaluation of pH/thermo dual responsive hydrogels as controlled ibuprofen sodium in situ depot. 控制布洛芬钠原位库pH/热双响应水凝胶的制备及体外评价。
IF 1.8 4区 化学
Designed Monomers and Polymers Pub Date : 2024-12-30 eCollection Date: 2025-01-01 DOI: 10.1080/15685551.2024.2442118
Samiullah Khan, Abdur Rehman, Syed Faisal Badshah, Gamal A Shazly, Amira Metouekel, Fakhreldeen Dabiellil
{"title":"Fabrication and <i>in vitro</i> evaluation of pH/thermo dual responsive hydrogels as controlled ibuprofen sodium <i>in situ</i> depot.","authors":"Samiullah Khan, Abdur Rehman, Syed Faisal Badshah, Gamal A Shazly, Amira Metouekel, Fakhreldeen Dabiellil","doi":"10.1080/15685551.2024.2442118","DOIUrl":"https://doi.org/10.1080/15685551.2024.2442118","url":null,"abstract":"<p><p>Ibuprofen sodium (IBP) is a commonly used NSAID for multiple pain conditions. However, despite its extensive use, it is associated with multiple GIT adverse effects after oral administration. In the present study, we have fabricated thermoresponsive gel depot using Poly (N-vinylcaprolactam) and sodium alginate as polymers. The designed formulations are intended to be used as IBP depot after being administered subcutaneously. The sol-gel phase transition temperature and gelation time of gel samples were optimized by tube inversion, rheological exploration and optical transmittances. Temperature sweep experiments confirmed that optimized gel samples have sol-gel transition between 32°C and 37°C. Swelling and <i>in vitro</i> drug release displayed that optimized gels have maximum swelling and IBP release at pH 7.4 and at 35°C confirming their pH/thermo sensitivity. The degradation profile of hydrogels displayed controlled degradation for 6 days that with increasing contents. MTT assay showed L929 cells displayed more than 90% cell viability against blank and IBP-loaded PNVCL/NaAlg hydrogels at optimized concentrations. Fourier transform infrared spectroscopy confirmed the polymer blend hydrogels structure formation. Thermogravimetric analysis confirmed the presence of thermoresponsive moieties and thermal stability of polymer blend hydrogel sample. While scanning electron microscopy showed that hydrogel has channels in structure that might facilitate the diffusion of solvent. Results concluded that PNVCL/NaAlg hydrogels can be utilized as IBP sustained depot following subcutaneous application <i>invivo</i> and GIT adverse effects could be avoided associated with its oral administration.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"28 1","pages":"1-15"},"PeriodicalIF":1.8,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703540/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and properties of bio-based semi-aromatic heat-resistant copolymer polyamide 5T-co-6T. 生物基半芳香族耐热共聚物聚酰胺 5T-co-6T 的合成与性能。
IF 1.8 4区 化学
Designed Monomers and Polymers Pub Date : 2024-08-11 eCollection Date: 2024-01-01 DOI: 10.1080/15685551.2024.2390700
Xiangcheng Bian, Liqun Ma, Chen Yang, Fuchun Zhang, Shuo Zhang, Yuan Li, Kai Gao, Bingxiao Liu, Zhongqiang Wang
{"title":"Synthesis and properties of bio-based semi-aromatic heat-resistant copolymer polyamide 5T-co-6T.","authors":"Xiangcheng Bian, Liqun Ma, Chen Yang, Fuchun Zhang, Shuo Zhang, Yuan Li, Kai Gao, Bingxiao Liu, Zhongqiang Wang","doi":"10.1080/15685551.2024.2390700","DOIUrl":"10.1080/15685551.2024.2390700","url":null,"abstract":"<p><p>Herein, poly(pentanediamine terephthalamide) (PA5T) homopolymer was synthesized via a salt-forming reaction+solid state polycondensation method using bio-based 1,5-pentanediamine and terephthalic acid as the primary raw materials. To address the issue of its narrower processing window, poly(hexamethylene terephthalamide)(PA6T), which also cannot be melt processed due to the processing window is negative, was introduced into its molecular chain to synthesize poly (pentanediamine/hexanediamine terephthaloyl) (PA5T-co-6T) copolymers. The structures were investigated by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance carbon spectroscopy (<sup>13</sup>C-NMR). Furthermore, the melting temperature, crystallization temperature, thermal stability, and crystal growth mode of the polymer were tested and analyzed using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and wide-angle x-ray diffraction (WAXD), respectively. The results demonstrate that the crystal growth mode gradually changes from three-dimensional spherical growth to two-dimensional disk-like or three-dimensional spherical growth with the increase of 6T chain segment content. Simultaneously, the crystallization temperature, melting temperature, and crystallization rate of the polymer all showed a trend of decreasing first and then increasing, which was due to the combined effects of the increase in the content of 6T chain segments on the molecular-chain structure and crystal structure of the polymer. Bio-based PA5T-co-6T has excellent heat resistance and a wider processing window than PA5T and PA6T, which possesses great application prospects in the fields of automotive, electronic appliances, and LED optics.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"27 1","pages":"87-102"},"PeriodicalIF":1.8,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321112/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress in synthesis, modification, characterization and applications of hyperbranched polyphosphate polyesters. 超支化聚磷酸酯的合成、改性、表征和应用进展。
IF 1.8 4区 化学
Designed Monomers and Polymers Pub Date : 2024-07-26 eCollection Date: 2024-01-01 DOI: 10.1080/15685551.2024.2376842
Dongyan Hao, Xiaoxiao Guo, Xing Zhu, Chao Wei, Lanchang Gao, Xuechuan Wang
{"title":"Progress in synthesis, modification, characterization and applications of hyperbranched polyphosphate polyesters.","authors":"Dongyan Hao, Xiaoxiao Guo, Xing Zhu, Chao Wei, Lanchang Gao, Xuechuan Wang","doi":"10.1080/15685551.2024.2376842","DOIUrl":"10.1080/15685551.2024.2376842","url":null,"abstract":"<p><p>Hyperbranched polyphosphate polyesters (HPPs) as a special class of hyperbranched polymers have attracted increased interest and have been intensively studied, because of peculiar structures, excellent biocompatibility, flexibility in physicochemical properties, biodegradability, water soluble, thermal stability, and mechanical properties. HPPs can be divided into phosphates as monomers and phosphates as end groups. In this article, the classification, general synthesis, modifications, and applications of HPP are reviewed. In addition, recent developments in the application of HPP are described, such as modified or functionalized by end capping and hypergrafting to improve the performances in polymer blends, coatings, flame retardant, leather. Furthermore, the modifications and application of HPPs in biomedical materials, such as drug delivery and bone regeneration were discussed. In summary, the hyperbranched polymer enlarges its application range and improves its application performance compared with conventional polymer. In the future, more new HPPs composite materials will be developed through hyperbranched technique. This review of HPPs will provide useful theoretical basis and technical support for the development of new hyperbranched polymer material.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"27 1","pages":"62-86"},"PeriodicalIF":1.8,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285245/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of polycarboxylate superplasticizer on the strength and hydration performance of alkali slag building materials. 聚羧酸盐超塑化剂对碱渣建材强度和水化性能的影响。
IF 1.8 4区 化学
Designed Monomers and Polymers Pub Date : 2024-07-06 eCollection Date: 2024-01-01 DOI: 10.1080/15685551.2024.2376780
Guide Liu, Xin Zheng, Guoliang Xie, Gongliang Liu
{"title":"The effect of polycarboxylate superplasticizer on the strength and hydration performance of alkali slag building materials.","authors":"Guide Liu, Xin Zheng, Guoliang Xie, Gongliang Liu","doi":"10.1080/15685551.2024.2376780","DOIUrl":"https://doi.org/10.1080/15685551.2024.2376780","url":null,"abstract":"<p><p>To explore the effect of polycarboxylate superplasticizers on the strength and hydration performance of alkali slag building materials, this study prepared cross-linked polycarboxylate superplasticizers with different ratios of hydrogen peroxide, methyl allyl alcohol polyoxyethylene ether, acrylic acid, polyethylene glycol diacrylate, monomer aqueous solution, reducing agent, chain transfer agent, etc. according to certain ratios, and tested their effects on the hydration performance and strength of alkali slag building materials. Through experimental analysis, it was found that the higher the proportion of cross-linked polycarboxylate based high-efficiency water-reducing agents, the lower the initial flowability of building material slurry; The addition of cross-linked polycarboxylate water-reducing agent will prolong the initial and final setting time of alkali slag building materials, delaying the hydration time of building materials; Cross linked polycarboxylate superplasticizers can reduce the electrical conductivity of alkali slag building material slurry, delaying its hydration rate; Different ratios of water-reducing agents have a significant impact on the water reduction rate of alkali slag building materials, with V2 water-reducing agent having the highest water-reduction rate of 28.6%; Cross linked polycarboxylate superplasticizers can increase the flexural and compressive strength of alkali slag building materials. Therefore, cross-linked polycarboxylate water-reducing agents have shown great potential in regulating the properties of alkali slag building materials.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"27 1","pages":"51-61"},"PeriodicalIF":1.8,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229711/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ionic Organic Network-based C3-symmetric@Triazine core as a selective Hg+2 sensor. 基于离子有机网络的 C3 对称@三嗪核心作为选择性 Hg+2 传感器。
IF 1.8 4区 化学
Designed Monomers and Polymers Pub Date : 2024-06-18 eCollection Date: 2024-01-01 DOI: 10.1080/15685551.2024.2360746
Maha A Alshubramy, M M Alam, Khalid A Alamry, Abdullah M Asiri, Mahmoud A Hussein, Mohammed M Rahman
{"title":"Ionic Organic Network-based C3-symmetric@Triazine core as a selective Hg<sup>+2</sup> sensor.","authors":"Maha A Alshubramy, M M Alam, Khalid A Alamry, Abdullah M Asiri, Mahmoud A Hussein, Mohammed M Rahman","doi":"10.1080/15685551.2024.2360746","DOIUrl":"10.1080/15685551.2024.2360746","url":null,"abstract":"<p><p>The C3-symmetry ionic polymer PPyTri has been designed with multi-walled carbon nanotubes (MWCNTs) or graphene nanoplatelets (GNPs) and studied as an ultrasensitive electrochemical sensor for trace Hg(II) detection. The synthesis approach incorporated attaching three pyridinium cationic components with chloride anions to the triazine core. The precursors, BPy, were synthesized using a condensation process involving 4-pyridine carboxaldehyde and focused nicotinic hydrazide. The polymer PPyTri was further modified with either MWCNTs or GNPs. The resulting ionic polymer PPyTri and its fabricated nanocomposites were characterized using infrared (IR), nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and powder X-ray diffraction (XRD). The analysis revealed that both the polymer and its nanocomposites have semi-crystalline structures. The electroactivity of the designed nanocomposites toward Hg + 2 ions revealed that among the nanocomposites and bare copolymer, the glassy carbon electrode (GCE) adapted with the PPyTri GNPs-5% exhibited the greatest current response over a wide range of Hg + 2 concentrations. The nanocomposite-modified electrode presented an excellent sensitivity of 83.33 µAµM - 1 cm - 2, a low detection limit of 0.033 nM, and a linear dynamic range of 0.1 nM to 0.01 mM (R2 = 0.9945).</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"27 1","pages":"35-50"},"PeriodicalIF":1.8,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188959/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141431657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyclodextrin-grafted redox-responsive hydrogel mediated by disulfide bridges for regulated drug delivery. 由二硫桥介导的环糊精接枝氧化还原反应水凝胶用于调节药物输送。
IF 1.6 4区 化学
Designed Monomers and Polymers Pub Date : 2024-05-30 eCollection Date: 2024-01-01 DOI: 10.1080/15685551.2024.2358581
Xin Xu, Jinku Xu, Zeyuan Sun, Derkach Tetiana
{"title":"Cyclodextrin-grafted redox-responsive hydrogel mediated by disulfide bridges for regulated drug delivery.","authors":"Xin Xu, Jinku Xu, Zeyuan Sun, Derkach Tetiana","doi":"10.1080/15685551.2024.2358581","DOIUrl":"10.1080/15685551.2024.2358581","url":null,"abstract":"<p><p>In this paper, a novel mono-methacrylated β-cyclodextrin (β-CD) monomer mediated by disulfide bond was synthesized, and then thermal copolymerized with HEMA monomer in the presence of a little crosslinker to prepare redox-responsive hydrogel for regulated drug delivery. The structure of the monomer was confirmed by FTIR, <sup>1</sup>H NMR, <sup>13</sup>C NMR spectroscopy. The substitution degree of polymerizable methacrylated group grafted onto β-CD was about 1 by calculating by<sup>1</sup>H NMR (0.987) and element analysis (0.937). The mono-methacrylated β-CD monomer can well copolymerize with 2-hydroxyethyl methacrylate (HEMA) monomer with gel fraction over 80%. The hydrogel shows low cytotoxicity, and copolymerization of the mono-methacrylated β-CD monomer in the hydrogels increases its equilibrium swelling degree (ESD) and tensile strength, while its transmittance slightly decreases. Drug loading and release rate are dependent on the β-CD content. The hydrogel with high β-CD content of 13.83 wt% shows 1.8 and 8.5 folds puerarin (PUE) and curcumin (CUR) loading than pure pHEMA hydrogel, respectively. The incorporation of β-CD sustained drug release, especially CUR release was prolonged more than 24 h from 5 h of pure pHEMA hydrogel (80% release). The hydrogels are highly sensitive to reduced glutathione (GSH), and low concentration of GSH of 3 mM can significantly accelerate drug release rate. The higher of β-CD content, the more sensitive the hydrogels to GSH, resulting in rapider drug release rate.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"27 1","pages":"21-34"},"PeriodicalIF":1.6,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141310/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new polyazomethine-based pyrazole moiety and its reinforced nanocomposites @ ZnO for antimicrobial applications. 一种新型聚氮甲基吡唑分子及其增强纳米复合材料 @ ZnO 用于抗菌应用。
IF 1.6 4区 化学
Designed Monomers and Polymers Pub Date : 2024-05-15 eCollection Date: 2024-01-01 DOI: 10.1080/15685551.2024.2352897
Aqilah A Hakami, Hajar S Alorfi, Thoraya A Farghaly, Mahmoud A Hussein
{"title":"A new polyazomethine-based pyrazole moiety and its reinforced nanocomposites @ ZnO for antimicrobial applications.","authors":"Aqilah A Hakami, Hajar S Alorfi, Thoraya A Farghaly, Mahmoud A Hussein","doi":"10.1080/15685551.2024.2352897","DOIUrl":"https://doi.org/10.1080/15685551.2024.2352897","url":null,"abstract":"<p><p>A new class of biologically active polyazomethine/pyrazole and their related nanocomposites, polyazomethine/pyrazole/zinc oxide nanoparticles, have been successfully synthesized through the polycondensation technique in the form of polyazomethine pyrazole (PAZm/Py<sub>4-6</sub>) and polyazomethine/pyrazole/zinc oxide nanoparticles (PAZm/Py/ZnO<sub>a-c</sub>). The polymeric nanocomposites were prepared with a 5% loading of zinc oxide nanofiller using the same preparation technique, in addition to the help of ultrasonic radiation. The characteristics of the new polymers, such as solubility, viscometry, and molecular weight, were examined. All the polymers were completely soluble in the following solvents: concentrated sulfuric acid, formic acid, dimethylformamide, dimethyl sulfoxide, and tetrahydrofuran. Furthermore, the weight loss of the polyazomethine pyrazole (4, 5, and 6) at 800 °C was 67%, 95%, and 86%, respectively, which indicates the thermal stability of these polymers. At 800 °C, the polyazomethine/pyrazole/zinc oxide nanoparticles (a, b, and c) lost 74%, 68%, and 75% of their weight, respectively. This shows that adding zinc oxide nanoparticles made these compounds more stable at high temperatures. The X-Ray diffraction pattern of the polyazomethine pyrazole (PAZm/Py<sub>4-6</sub>) shows a number of sharp peaks with varying intensities. The polymers that were studied had straight crystal structures. Furthermore, the measurements of polyazomethine/pyrazole/zinc oxide nanoparticles (PAZm/Py/ZnO<sub>a-c</sub>) indicate a good merging of zinc oxide nanoparticles into the matrix of polymers. The antimicrobial activity of polymers and polymer nanocomposites was tested against some selected bacteria and fungi. The synthesized polymer (c) shows the highest activity against the two types of gram-negative bacteria selected. Most tested compounds were found to be effective against gram-positive bacteria except polyazomethine pyrazole (PAZm/Py<sub>5</sub>) and polyazomethine pyrazole (PAZm/Py<sub>6</sub>), which do not exhibit any activity. The synthesized polymers and their related nanocomposites were tested for their ability to kill the chosen fungi. All of them were effective against Aspergillus flavus, but only polyazomethine pyrazole (PAZm/Py<sub>4</sub>) and polyazomethine/pyrazole/zinc oxide (PAZm/Py/ZnO<sub>c</sub>) were effective against Candida albicans.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"27 1","pages":"1-20"},"PeriodicalIF":1.6,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11097710/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140956711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信