{"title":"超支化聚磷酸酯的合成、改性、表征和应用进展。","authors":"Dongyan Hao, Xiaoxiao Guo, Xing Zhu, Chao Wei, Lanchang Gao, Xuechuan Wang","doi":"10.1080/15685551.2024.2376842","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperbranched polyphosphate polyesters (HPPs) as a special class of hyperbranched polymers have attracted increased interest and have been intensively studied, because of peculiar structures, excellent biocompatibility, flexibility in physicochemical properties, biodegradability, water soluble, thermal stability, and mechanical properties. HPPs can be divided into phosphates as monomers and phosphates as end groups. In this article, the classification, general synthesis, modifications, and applications of HPP are reviewed. In addition, recent developments in the application of HPP are described, such as modified or functionalized by end capping and hypergrafting to improve the performances in polymer blends, coatings, flame retardant, leather. Furthermore, the modifications and application of HPPs in biomedical materials, such as drug delivery and bone regeneration were discussed. In summary, the hyperbranched polymer enlarges its application range and improves its application performance compared with conventional polymer. In the future, more new HPPs composite materials will be developed through hyperbranched technique. This review of HPPs will provide useful theoretical basis and technical support for the development of new hyperbranched polymer material.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"27 1","pages":"62-86"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285245/pdf/","citationCount":"0","resultStr":"{\"title\":\"Progress in synthesis, modification, characterization and applications of hyperbranched polyphosphate polyesters.\",\"authors\":\"Dongyan Hao, Xiaoxiao Guo, Xing Zhu, Chao Wei, Lanchang Gao, Xuechuan Wang\",\"doi\":\"10.1080/15685551.2024.2376842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hyperbranched polyphosphate polyesters (HPPs) as a special class of hyperbranched polymers have attracted increased interest and have been intensively studied, because of peculiar structures, excellent biocompatibility, flexibility in physicochemical properties, biodegradability, water soluble, thermal stability, and mechanical properties. HPPs can be divided into phosphates as monomers and phosphates as end groups. In this article, the classification, general synthesis, modifications, and applications of HPP are reviewed. In addition, recent developments in the application of HPP are described, such as modified or functionalized by end capping and hypergrafting to improve the performances in polymer blends, coatings, flame retardant, leather. Furthermore, the modifications and application of HPPs in biomedical materials, such as drug delivery and bone regeneration were discussed. In summary, the hyperbranched polymer enlarges its application range and improves its application performance compared with conventional polymer. In the future, more new HPPs composite materials will be developed through hyperbranched technique. This review of HPPs will provide useful theoretical basis and technical support for the development of new hyperbranched polymer material.</p>\",\"PeriodicalId\":11170,\"journal\":{\"name\":\"Designed Monomers and Polymers\",\"volume\":\"27 1\",\"pages\":\"62-86\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285245/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designed Monomers and Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/15685551.2024.2376842\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designed Monomers and Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15685551.2024.2376842","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Progress in synthesis, modification, characterization and applications of hyperbranched polyphosphate polyesters.
Hyperbranched polyphosphate polyesters (HPPs) as a special class of hyperbranched polymers have attracted increased interest and have been intensively studied, because of peculiar structures, excellent biocompatibility, flexibility in physicochemical properties, biodegradability, water soluble, thermal stability, and mechanical properties. HPPs can be divided into phosphates as monomers and phosphates as end groups. In this article, the classification, general synthesis, modifications, and applications of HPP are reviewed. In addition, recent developments in the application of HPP are described, such as modified or functionalized by end capping and hypergrafting to improve the performances in polymer blends, coatings, flame retardant, leather. Furthermore, the modifications and application of HPPs in biomedical materials, such as drug delivery and bone regeneration were discussed. In summary, the hyperbranched polymer enlarges its application range and improves its application performance compared with conventional polymer. In the future, more new HPPs composite materials will be developed through hyperbranched technique. This review of HPPs will provide useful theoretical basis and technical support for the development of new hyperbranched polymer material.
期刊介绍:
Designed Monomers and Polymers ( DMP) publishes prompt peer-reviewed papers and short topical reviews on all areas of macromolecular design and applications. Emphasis is placed on the preparations of new monomers, including characterization and applications. Experiments should be presented in sufficient detail (including specific observations, precautionary notes, use of new materials, techniques, and their possible problems) that they could be reproduced by any researcher wishing to repeat the work.
The journal also includes macromolecular design of polymeric materials (such as polymeric biomaterials, biomedical polymers, etc.) with medical applications.
DMP provides an interface between organic and polymer chemistries and aims to bridge the gap between monomer synthesis and the design of new polymers. Submssions are invited in the areas including, but not limited to:
-macromolecular science, initiators, macroinitiators for macromolecular design
-kinetics, mechanism and modelling aspects of polymerization
-new methods of synthesis of known monomers
-new monomers (must show evidence for polymerization, e.g. polycondensation, sequential combination, oxidative coupling, radiation, plasma polymerization)
-functional prepolymers of various architectures such as hyperbranched polymers, telechelic polymers, macromonomers, or dendrimers
-new polymeric materials with biomedical applications