Progress in synthesis, modification, characterization and applications of hyperbranched polyphosphate polyesters.

IF 1.8 4区 化学 Q3 POLYMER SCIENCE
Designed Monomers and Polymers Pub Date : 2024-07-26 eCollection Date: 2024-01-01 DOI:10.1080/15685551.2024.2376842
Dongyan Hao, Xiaoxiao Guo, Xing Zhu, Chao Wei, Lanchang Gao, Xuechuan Wang
{"title":"Progress in synthesis, modification, characterization and applications of hyperbranched polyphosphate polyesters.","authors":"Dongyan Hao, Xiaoxiao Guo, Xing Zhu, Chao Wei, Lanchang Gao, Xuechuan Wang","doi":"10.1080/15685551.2024.2376842","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperbranched polyphosphate polyesters (HPPs) as a special class of hyperbranched polymers have attracted increased interest and have been intensively studied, because of peculiar structures, excellent biocompatibility, flexibility in physicochemical properties, biodegradability, water soluble, thermal stability, and mechanical properties. HPPs can be divided into phosphates as monomers and phosphates as end groups. In this article, the classification, general synthesis, modifications, and applications of HPP are reviewed. In addition, recent developments in the application of HPP are described, such as modified or functionalized by end capping and hypergrafting to improve the performances in polymer blends, coatings, flame retardant, leather. Furthermore, the modifications and application of HPPs in biomedical materials, such as drug delivery and bone regeneration were discussed. In summary, the hyperbranched polymer enlarges its application range and improves its application performance compared with conventional polymer. In the future, more new HPPs composite materials will be developed through hyperbranched technique. This review of HPPs will provide useful theoretical basis and technical support for the development of new hyperbranched polymer material.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"27 1","pages":"62-86"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285245/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designed Monomers and Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15685551.2024.2376842","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperbranched polyphosphate polyesters (HPPs) as a special class of hyperbranched polymers have attracted increased interest and have been intensively studied, because of peculiar structures, excellent biocompatibility, flexibility in physicochemical properties, biodegradability, water soluble, thermal stability, and mechanical properties. HPPs can be divided into phosphates as monomers and phosphates as end groups. In this article, the classification, general synthesis, modifications, and applications of HPP are reviewed. In addition, recent developments in the application of HPP are described, such as modified or functionalized by end capping and hypergrafting to improve the performances in polymer blends, coatings, flame retardant, leather. Furthermore, the modifications and application of HPPs in biomedical materials, such as drug delivery and bone regeneration were discussed. In summary, the hyperbranched polymer enlarges its application range and improves its application performance compared with conventional polymer. In the future, more new HPPs composite materials will be developed through hyperbranched technique. This review of HPPs will provide useful theoretical basis and technical support for the development of new hyperbranched polymer material.

超支化聚磷酸酯的合成、改性、表征和应用进展。
超支化聚磷酸酯(HPPs)作为一类特殊的超支化聚合物,因其奇特的结构、优异的生物相容性、灵活的理化性质、生物降解性、水溶性、热稳定性和机械性能,引起了越来越多的关注和深入研究。HPPs 可分为作为单体的磷酸盐和作为端基的磷酸盐。本文综述了 HPP 的分类、一般合成、改性和应用。此外,还介绍了 HPP 的最新应用发展,如通过端基封端和超接枝进行改性或功能化,以提高其在聚合物共混物、涂料、阻燃剂和皮革中的性能。此外,还讨论了 HPP 在生物医学材料中的改性和应用,如药物输送和骨再生。总之,与传统聚合物相比,超支化聚合物扩大了应用范围,提高了应用性能。未来,通过超支化技术将开发出更多新型 HPPs 复合材料。本文对 HPPs 的综述将为新型超支化聚合物材料的开发提供有益的理论依据和技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Designed Monomers and Polymers
Designed Monomers and Polymers 化学-高分子科学
CiteScore
3.30
自引率
0.00%
发文量
28
审稿时长
2.1 months
期刊介绍: Designed Monomers and Polymers ( DMP) publishes prompt peer-reviewed papers and short topical reviews on all areas of macromolecular design and applications. Emphasis is placed on the preparations of new monomers, including characterization and applications. Experiments should be presented in sufficient detail (including specific observations, precautionary notes, use of new materials, techniques, and their possible problems) that they could be reproduced by any researcher wishing to repeat the work. The journal also includes macromolecular design of polymeric materials (such as polymeric biomaterials, biomedical polymers, etc.) with medical applications. DMP provides an interface between organic and polymer chemistries and aims to bridge the gap between monomer synthesis and the design of new polymers. Submssions are invited in the areas including, but not limited to: -macromolecular science, initiators, macroinitiators for macromolecular design -kinetics, mechanism and modelling aspects of polymerization -new methods of synthesis of known monomers -new monomers (must show evidence for polymerization, e.g. polycondensation, sequential combination, oxidative coupling, radiation, plasma polymerization) -functional prepolymers of various architectures such as hyperbranched polymers, telechelic polymers, macromonomers, or dendrimers -new polymeric materials with biomedical applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信