{"title":"Ecology of Lassa Virus.","authors":"Allison R Smither, Antoinette R Bell-Kareem","doi":"10.1007/82_2020_231","DOIUrl":"10.1007/82_2020_231","url":null,"abstract":"<p><p>Individuals living in endemic hotspots of Lassa fever have recurrent exposure to Lassa virus (LASV) via spillover from the primary host reservoir Mastomys natalensis. Despite M. natalensis being broadly distributed across sub-Saharan Africa, Lassa fever is only found in West Africa. In recent years, new LASV reservoirs have been identified. Erudition of rodent habitats, reproduction and fecundity, movement patterns, and spatial preferences are essential to institute preventative measures against Lassa fever. Evolutionary insights have also added to our knowledge of closely related mammarenavirus distribution amongst rodents throughout the continent.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":"440 ","pages":"67-86"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/82_2020_231","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9828993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"50 Years of Lassa Fever Research.","authors":"Robert F Garry","doi":"10.1007/82_2020_214","DOIUrl":"https://doi.org/10.1007/82_2020_214","url":null,"abstract":"<p><p>Lassa fever was first described as a clinical entity fifty years ago. The causative agent Lassa virus was isolated from these first known cases. This chapter reviews the key publications on Lassa fever research that appeared in the scientific literature at that time and over the ensuing decades.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":"440 ","pages":"1-22"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/82_2020_214","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9883153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Soledad Delgado, Cecilio López-Galíndez, Federico Moran
{"title":"Viral Fitness Landscapes Based on Self-organizing Maps.","authors":"M Soledad Delgado, Cecilio López-Galíndez, Federico Moran","doi":"10.1007/978-3-031-15640-3_2","DOIUrl":"https://doi.org/10.1007/978-3-031-15640-3_2","url":null,"abstract":"<p><p>The creation of fitness maps from viral populations especially in the case of RNA viruses, with high mutation rates producing quasispecies, is complex since the mutant spectrum is in a very high-dimensional space. In this work, a new approach is presented using a class of neural networks, Self-Organized Maps (SOM), to represent realistic fitness landscapes in two RNA viruses: Human Immunodeficiency Virus type 1 (HIV-1) and Hepatitis C Virus (HCV). This methodology has proven to be very effective in the classification of viral quasispecies, using as criterium the mutant sequences in the population. With HIV-1, the fitness landscapes are constructed by representing the experimentally determined fitness on the sequence map. This approach permitted the depiction of the evolutionary paths of the variants subjected to processes of fitness loss and gain in cell culture. In the case of HCV, the efficiency was measured as a function of the frequency of each haplotype in the population by ultra-deep sequencing. The fitness landscapes obtained provided information on the efficiency of each variant in the quasispecies environment, that is, in relation to the entire spectrum of mutants. With the SOM maps, it is possible to determine the evolutionary dynamics of the different haplotypes.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":"439 ","pages":"95-119"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10474581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Immune Responses to Varicella-Zoster Virus Vaccines.","authors":"Myron J Levin, Adriana Weinberg","doi":"10.1007/82_2021_245","DOIUrl":"https://doi.org/10.1007/82_2021_245","url":null,"abstract":"<p><p>The live attenuated varicella vaccine is intended to mimic the tempo and nature of the humoral and cell-mediated immune responses to varicella infection. To date, two doses of varicella vaccine administered in childhood have been very effective in generating varicella-zoster virus (VZV) immune responses that prevent natural infection for at least several decades. After primary infection, the infecting VZV establishes latency in sensory and cranial nerve ganglia with the potential to reactivate and cause herpes zoster. Although, the immune responses developed during varicella are important for preventing herpes zoster they wane with increasing age (immune senescence) or with the advent of immune suppression. Protection can be restored by increasing cell-mediated immune responses with two doses of an adjuvanted recombinant VZV glycoprotein E vaccine that stimulates both VZV-and gE-specific immunity. This vaccine provides ~85-90% protection against herpes zoster for 7-8 years (to date).</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":" ","pages":"223-246"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39739175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Varicella-Zoster Virus-Genetics, Molecular Evolution and Recombination.","authors":"Daniel P Depledge, Judith Breuer","doi":"10.1007/82_2021_238","DOIUrl":"https://doi.org/10.1007/82_2021_238","url":null,"abstract":"<p><p>This chapter first details the structure, organization and coding content of the VZV genome to provide a foundation on which the molecular evolution of the virus can be projected. We subsequently describe the evolution of molecular profiling approaches from restriction fragment length polymorphisms to single nucleotide polymorphism profiling to modern day high-throughput sequencing approaches. We describe how the application of these methodologies led to our current model of VZV phylogeograpy including the number and structure of geographic clades and the role of recombination in reshaping these.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":" ","pages":"1-23"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39296916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Manipulation of Host Cell Death Pathways by Herpes Simplex Virus.","authors":"Sudan He, Jiahuai Han","doi":"10.1007/82_2020_196","DOIUrl":"10.1007/82_2020_196","url":null,"abstract":"<p><p>Herpes simplex virus (HSV)-1 and HSV-2 are ubiquitous human pathogens that infect keratinized epithelial surfaces and establish lifelong latent infection in sensory neurons of the peripheral nervous system. HSV-1 causes oral cold sores, and HSV-2 causes genital lesions characterized by recurrence at the site of the initial infection. In multicellular organisms, cell death plays a pivotal role in host defense by eliminating pathogen-infected cells. Apoptosis and necrosis are readily distinguished types of cell death. Apoptosis, the main form of programmed cell death, depends on the activity of certain caspases, a family of cysteine proteases. Necroptosis, a regulated form of necrosis that is unleashed when caspase activity is compromised, requires the activation of receptor-interacting protein (RIP) kinase 3 (RIPK3) through its interaction with other RIP homotypic interaction motif (RHIM)-containing proteins such as RIPK1. To ensure lifelong infection in the host, HSV carries out sophisticated molecular strategies to evade host cell death responses during viral infection. HSV-1 is a well-characterized pathogen that encodes potent viral inhibitors that modulate both caspase activation in the apoptosis pathway and RIPK3 activation in the necroptosis pathway in a dramatic, species-specific fashion. The viral UL39-encoded viral protein ICP6, the large subunit of the virus-encoded ribonucleotide reductase, functions as a suppressor of both caspase-8 and RHIM-dependent RIPK3 activities in the natural human host. In contrast, ICP6 RHIM-mediated recruitment of RIPK3 in the nonnatural mouse host drives the direct activation of necroptosis. This chapter provides an overview of the current state of the knowledge on molecular interactions between HSV-1 viral proteins and host cell death pathways and highlights how HSV-1 manipulates cell death signals for the benefit of viral propagation.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":" ","pages":"85-103"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/82_2020_196","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37645514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Common Features Between Stroke Following Varicella in Children and Stroke Following Herpes Zoster in Adults : Varicella-Zoster Virus in Trigeminal Ganglion.","authors":"Charles Grose, Amir Shaban, Heather J Fullerton","doi":"10.1007/82_2021_236","DOIUrl":"10.1007/82_2021_236","url":null,"abstract":"<p><p>The cerebral arteries are innervated by afferent fibers from the trigeminal ganglia. Varicella-zoster virus (VZV) frequently resides in the trigeminal ganglion. Reports of arterial ischemic stroke due to VZV cerebral vasculopathy in adults after herpes zoster have been described for decades. Reports of arterial ischemic stroke due to post-varicella cerebral arteriopathy in children have also been described for decades. One rationale for this review has been post-licensure studies that have shown an apparent protective effect from stroke in both adults who have received live zoster vaccine and children who have received live varicella vaccine. In this review, we define common features between stroke following varicella in children and stroke following herpes zoster in adults. The trigeminal ganglion and to a lesser extent the superior cervical ganglion are central to the stroke pathogenesis pathway because afferent fibers from these two ganglia provide the circuitry by which the virus can travel to the anterior and posterior circulations of the brain. Based on studies in pseudorabies virus (PRV) models, it is likely that VZV is carried to the cerebral arteries on a kinesin motor via gE, gI and the homolog of PRV US9. The gE product is an essential VZV protein.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":" ","pages":"247-272"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39158090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modulation of Apoptosis and Cell Death Pathways by Varicella-Zoster Virus.","authors":"M. Steain, B. Slobedman, A. Abendroth","doi":"10.1007/82_2021_249","DOIUrl":"https://doi.org/10.1007/82_2021_249","url":null,"abstract":"","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45303121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Humanized Severe Combined Immunodeficient (SCID) Mouse Models for Varicella-Zoster Virus Pathogenesis.","authors":"M. Lloyd, J. Moffat","doi":"10.1007/82_2022_255","DOIUrl":"https://doi.org/10.1007/82_2022_255","url":null,"abstract":"","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43253585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Allison August, Luis Brito, Robert Paris, Tal Zaks
{"title":"Clinical Development of mRNA Vaccines: Challenges and Opportunities.","authors":"Allison August, Luis Brito, Robert Paris, Tal Zaks","doi":"10.1007/82_2022_259","DOIUrl":"https://doi.org/10.1007/82_2022_259","url":null,"abstract":"<p><p>The emergence of safe and effective mRNA platform-based COVID-19 vaccines from the recent pandemic has changed the face of vaccine development. Compared with conventional technologies used historically, mRNA-based vaccines offer a rapid flexible and robust approach to preventing disease caused by transient viral strains such as SAR2-CoV-2 variants of concern and seasonal influenza. Adaptations in the formulation of the mRNA delivery systems such as with lipid nanoparticle delivery (LNP) used in mRNA-1273 and BNT16b2b have enabled this technology to flourish under the urgent collective response and collaborative regulatory understanding derived from COVID-19 vaccine development. The application of mRNA-based therapeutics in other areas holds potential promise including combination vaccines that might deliver protections against multiple infectious diseases. Future studies and further advances in mRNA-based technologies will provide insight into the clinical efficacy and real-world effectiveness of vaccines as well as provisions with respect to the impact of reactogenicity profiles. Overall, the success of mRNA-based COVID-19 vaccines has helped unlock a platform likely to result in many more candidate vaccines entering clinical evaluation to address the unmet medical needs of other diseases including viral respiratory diseases, herpesviruses, and historically challenging vaccine targets such as HIV.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":"440 ","pages":"167-186"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10868067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}