{"title":"Serotonergic Modulation of Olfactory Processing in Locust Antennae","authors":"Xinyang Zhang , Xiao Xu","doi":"10.1016/j.cois.2024.101238","DOIUrl":"10.1016/j.cois.2024.101238","url":null,"abstract":"<div><p>Insects have sophisticated olfactory systems that enable them to detect and respond to complex exogenous chemical cues. The encoding mechanisms of these chemical signals have been studied both in their peripheral and central nervous systems (CNS). While many neuromodulators have been shown to play significant roles in olfactory processing within the antennal lobes of the brain, their roles in peripheral olfactory sensory systems, such as the antennae, are less understood. This review focuses on the role of serotonin (5-HT) receptor in the locust antenna, specifically the modulatory function of the serotonin receptor<sub>2</sub> on odour inputs. We also review recent studies on the modulation of olfaction in the peripheral nervous systems of other insects and discuss potential directions for future research on the role of neuromodulators in insect peripheral olfactory systems.</p></div>","PeriodicalId":11038,"journal":{"name":"Current opinion in insect science","volume":"66 ","pages":"Article 101238"},"PeriodicalIF":5.8,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marek Jindra , Sarka Tumova , Lenka Bittova , Roman Tuma , David Sedlak
{"title":"Agonist-dependent action of the juvenile hormone receptor","authors":"Marek Jindra , Sarka Tumova , Lenka Bittova , Roman Tuma , David Sedlak","doi":"10.1016/j.cois.2024.101234","DOIUrl":"10.1016/j.cois.2024.101234","url":null,"abstract":"<div><p>Juvenile hormone (JH) signaling is realized at the gene regulatory level by receptors of the bHLH-PAS transcription factor family. The sesquiterpenoid hormones and their synthetic mimics are agonist ligands of a unique JH receptor (JHR) protein, methoprene-tolerant (MET). Upon binding an agonist to its PAS-B cavity, MET dissociates from a cytoplasmic chaperone complex including HSP83 and concomitantly switches to a bHLH-PAS partner taiman, forming a nuclear, transcriptionally active JHR heterodimer. This course of events resembles the vertebrate aryl hydrocarbon receptor (AHR), activated by a plethora of endogenous and synthetic compounds. Like in AHR, the pliable PAS-B cavity of MET adjusts to diverse ligands and binds them through similar mechanisms. Despite recent progress, we only begin to discern agonist-induced conformational shifts within the PAS-B domain, with the ultimate goal of understanding how these localized changes stimulate the assembly of the active JHR complex and, thus, fully grasp the mechanism of JHR signaling.</p></div>","PeriodicalId":11038,"journal":{"name":"Current opinion in insect science","volume":"65 ","pages":"Article 101234"},"PeriodicalIF":5.8,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214574524000762/pdfft?md5=e947b21312d9e8992bac1a9dbad34e0d&pid=1-s2.0-S2214574524000762-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Madhusudan Manjunatha , Michael Pham , Monika Gulia-Nuss , Andrew Nuss
{"title":"Gene editing in agricultural, health, and veterinary pest arthropods: recent advances","authors":"Madhusudan Manjunatha , Michael Pham , Monika Gulia-Nuss , Andrew Nuss","doi":"10.1016/j.cois.2024.101235","DOIUrl":"10.1016/j.cois.2024.101235","url":null,"abstract":"<div><p>Pest arthropods cause significant crop damage or are vectors of pathogens for both plants and animals. The current standard of pest management prevents against crop losses and protects human and animal health, but shortcomings exist, such as insecticide resistance and environmental damage to nontarget organisms. New management methods are therefore needed. The development of new tools, such as site-specific gene editing, has accelerated the study of gene function and phenotype in nonmodel arthropod species and may enable the development of new strategies for pathogen and arthropod control. Here, the most recent developments in gene editing in arthropod pests are briefly reviewed. Additionally, technological advances that could be applicable to new species or enhance the success rates of gene editing in species with already established protocols are highlighted.</p></div>","PeriodicalId":11038,"journal":{"name":"Current opinion in insect science","volume":"65 ","pages":"Article 101235"},"PeriodicalIF":5.8,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An integrative genomic toolkit for studying the genetic, evolutionary, and molecular underpinnings of eusociality in insects","authors":"","doi":"10.1016/j.cois.2024.101231","DOIUrl":"10.1016/j.cois.2024.101231","url":null,"abstract":"<div><p>While genomic resources for social insects have vastly increased over the past two decades, we are still far from understanding the genetic and molecular basis of eusociality. Here, we briefly review three scientific advancements that, when integrated, can be highly synergistic for advancing our knowledge of the genetics and evolution of eusocial traits. Population genomics provides a natural way to quantify the strength of natural selection on coding and regulatory sequences, highlighting genes that have undergone adaptive evolution during the evolution or maintenance of eusociality. Genome-wide association studies (GWAS) can be used to characterize the complex genetic architecture underlying eusocial traits and identify candidate causal variants. Concurrently, CRISPR/Cas9 enables the precise manipulation of gene function to both validate genotype–phenotype associations and study the molecular biology underlying interesting traits. While each approach has its own advantages and disadvantages, which we discuss herein, we argue that their combination will ultimately help us better understand the genetics and evolution of eusocial behavior. Specifically, by triangulating across these three different approaches, researchers can directly identify and study loci that have a causal association with key phenotypes and have evidence of positive selection over the relevant timescales associated with the evolution and maintenance of eusociality in insects.</p></div>","PeriodicalId":11038,"journal":{"name":"Current opinion in insect science","volume":"65 ","pages":"Article 101231"},"PeriodicalIF":5.8,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214574524000737/pdfft?md5=def5feae1854413d419a230e3ae428cb&pid=1-s2.0-S2214574524000737-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Parasitoids for biological control in dryland agroecosystems","authors":"Norah Saabna , Tamar Keasar","doi":"10.1016/j.cois.2024.101226","DOIUrl":"10.1016/j.cois.2024.101226","url":null,"abstract":"<div><p>This review focuses on biological control interactions in arid areas and is motivated by the need to devise sustainable agricultural practices for a warming and drying world. Parasitoids, important natural enemies of crop pests, are diverse and abundant in natural arid habitats. Dryland croplands, which are usually irrigated, are also rich in local parasitoids. Nevertheless, biological control projects in arid croplands mostly involve imported parasitoids (classical biological control) rather than the conservation of native species. Dryland parasitoids experience heat, drought, low relative humidity, sparse vegetation, and low host densities. Heat resistance combines local genetic adaptations, behavioral and physiological flexibility, and microbial symbioses, but how parasitoids cope with other aridity-related challenges is insufficiently understood. How dryland conditions impact host–parasitoid population dynamics also requires further study.</p></div>","PeriodicalId":11038,"journal":{"name":"Current opinion in insect science","volume":"64 ","pages":"Article 101226"},"PeriodicalIF":5.8,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of phytochemical diversity on multitrophic interactions","authors":"Luis Abdala-Roberts , Xoaquín Moreira","doi":"10.1016/j.cois.2024.101228","DOIUrl":"10.1016/j.cois.2024.101228","url":null,"abstract":"<div><p>The ecological effects of plant diversity have been well studied, but the extent to which they are driven by variation in specialized metabolites is not well understood. Here, we provide theoretical background on phytochemical diversity effects on herbivory and its expanded consequences for higher trophic levels. We then review empirical evidence for effects on predation and parasitism by focusing on a handful of studies that have undertaken manipulative approaches and link back their results to theory on mechanisms. We close by summarizing key aspects for future research, building on knowledge gained thus far.</p></div>","PeriodicalId":11038,"journal":{"name":"Current opinion in insect science","volume":"64 ","pages":"Article 101228"},"PeriodicalIF":5.8,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michal Segoli , Miriam Kishinevsky , Jeffrey A Harvey
{"title":"Climate change, temperature extremes, and impacts on hyperparasitoids","authors":"Michal Segoli , Miriam Kishinevsky , Jeffrey A Harvey","doi":"10.1016/j.cois.2024.101229","DOIUrl":"10.1016/j.cois.2024.101229","url":null,"abstract":"<div><p>Anthropogenic climate change, including temperature extremes, is having a major impact on insect physiology, phenology, behavior, populations, and communities. Hyperparasitoids (insects whose offspring develop in, or on, the body of a primary parasitoid host) are expected to be especially impacted by such effects due to their typical life history traits (e.g. low fecundity and slow development), small populations (being high on the food chain), and cascading effects mediated via lower trophic levels. We review evidence for direct and indirect temperature and climate-related effects mediated via plants, herbivores, and the primary parasitoid host species on hyperparasitoid populations, focusing on higher temperatures. We discuss how hyperparasitoid responses may feed back to the community and affect biological control programs. We conclude that despite their great importance, very little is known about the potential effects of climate change on hyperparasitoids and make a plea for additional studies exploring such responses.</p></div>","PeriodicalId":11038,"journal":{"name":"Current opinion in insect science","volume":"64 ","pages":"Article 101229"},"PeriodicalIF":5.8,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"No sexual pheromones in Anopheles mosquitoes?","authors":"Kelsey Adams , Olivier Roux","doi":"10.1016/j.cois.2024.101227","DOIUrl":"10.1016/j.cois.2024.101227","url":null,"abstract":"<div><p>Swarming behavior is the cornerstone of the anopheline mating system. At dusk, males congregate in monospecific swarms in which females come to find a mate once in their lives. Although many <em>Anopheles</em> species coexist in sympatry, hybrids are infrequent, suggesting the existence of strong premating reproductive barriers. Chemical cues, particularly pheromones, often play a crucial role in bringing sexes together in a species-specific manner among insects. While the existence of sexual pheromones in <em>Anopheles</em> species has been postulated, only a few studies developed experimental designs to investigate their presence. Here, we discuss the contrasting and debatable findings regarding both long-range and contact sex pheromones in the context of swarm ecology in <em>Anopheles</em> species.</p></div>","PeriodicalId":11038,"journal":{"name":"Current opinion in insect science","volume":"64 ","pages":"Article 101227"},"PeriodicalIF":5.8,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214574524000695/pdfft?md5=1a328e5a463b1ca4b34dbd68c5071e24&pid=1-s2.0-S2214574524000695-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katherine H Malinski , Megan Elizabeth Moore , Joel G Kingsolver
{"title":"Heat stress and host–parasitoid interactions: lessons and opportunities in a changing climate","authors":"Katherine H Malinski , Megan Elizabeth Moore , Joel G Kingsolver","doi":"10.1016/j.cois.2024.101225","DOIUrl":"10.1016/j.cois.2024.101225","url":null,"abstract":"<div><p>Ongoing climate change is increasing the frequency and magnitude of high-temperature events (HTEs), causing heat stress in parasitoids and their hosts. We argue that HTEs and heat stress should be viewed in terms of the intersecting life cycles of host and parasitoid. Recent studies illustrate how the biological consequences of a given HTE may vary dramatically depending on its timing within these lifecycles. The temperature sensitivity of host manipulation by parasitoids, and by viral endosymbionts of many parasitoids, can contribute to differing responses of hosts and parasitoids to HTEs. In some cases, these effects can result in reduced parasitoid success and increased host herbivory and may disrupt the ecological interactions between hosts and parasitoids. Because most studies to date involve endoparasitoids of aphid or lepidopteran hosts in agricultural systems, our understanding of heat responses of host–parasitoid interactions in natural systems is quite limited.</p></div>","PeriodicalId":11038,"journal":{"name":"Current opinion in insect science","volume":"64 ","pages":"Article 101225"},"PeriodicalIF":5.8,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}