Liting Chen , Xiaoqing Liu , Yongchao Tang , Zhipeng Wen , Cheng Chao Li
{"title":"Recent advancement in electrolyte optimization for rechargeable aqueous zinc–sulfur (Zn–S) batteries","authors":"Liting Chen , Xiaoqing Liu , Yongchao Tang , Zhipeng Wen , Cheng Chao Li","doi":"10.1016/j.coelec.2024.101555","DOIUrl":"10.1016/j.coelec.2024.101555","url":null,"abstract":"<div><p>Zinc–sulfur (Zn–S) batteries have attracted a lot of interest in the field of battery development due to their many benefits, which include their extremely high theoretical capacity and energy density, low cost, and excellent safety. However, the development of aqueous Zn–S batteries is hampered by the slow reaction kinetics of sulphur, lower discharge voltage, cathode volume expansion during zincation, and corrosion and hydrogen precipitation reactions of the negative electrode in aqueous electrolyte. These factors also seriously affect the cycle life of Zn–S batteries. This review outlines the advancements made in the field of aqueous electrolyte modification in Zn–S batteries in recent years, emphasises the significance of optimising aqueous electrolytes in raising Zn–S battery performance, and suggests future research avenues based on the findings of the current studies.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"47 ","pages":"Article 101555"},"PeriodicalIF":7.9,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141398468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jessica H. van Wonderen , Alejandro Morales-Florez , Thomas A. Clarke , Andrew J. Gates , Jochen Blumberger , Zdenek Futera , David J. Richardson , Julea N. Butt , Geoffrey R. Moore
{"title":"Do multiheme cytochromes containing close-packed heme groups have a band structure formed from the heme π and π∗ orbitals?","authors":"Jessica H. van Wonderen , Alejandro Morales-Florez , Thomas A. Clarke , Andrew J. Gates , Jochen Blumberger , Zdenek Futera , David J. Richardson , Julea N. Butt , Geoffrey R. Moore","doi":"10.1016/j.coelec.2024.101556","DOIUrl":"10.1016/j.coelec.2024.101556","url":null,"abstract":"<div><p>Multiheme cytochromes (MHCs) are bacterial electron-transfer proteins. We show from optical spectra and calculations that some of these cytochromes probably contain occupied and unoccupied bands formed from heme π and π∗ orbitals that span the protein. In the fully oxidised proteins, the unoccupied π∗-bands are energetically above the redox-active frontier orbitals, which according to NMR data and calculations, are formed of Fe<sup>3+</sup> t<sub>2g</sub> and porphyrin π-orbitals. These orbitals on different hemes are electronically coupled according to EPR data and calculations, but only weakly so. We suggest a role for the heme bands in the electronic conductivity of single MHCs in bioelectronic junctions that is distinct from the role of the redox-active Fe<sup>3+</sup> t<sub>2g</sub> and porphyrin π-orbitals in physiological electron transfer.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"47 ","pages":"Article 101556"},"PeriodicalIF":7.9,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451910324001170/pdfft?md5=daef8c57ac2ad3b11736777dabf4986c&pid=1-s2.0-S2451910324001170-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141401142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent progress on graphene nanoribbon-based electrocatalysts for oxygen reduction reaction","authors":"Yogesh Kumar , Srinu Akula , Marciélli K.R. Souza , Gilberto Maia , Kaido Tammeveski","doi":"10.1016/j.coelec.2024.101554","DOIUrl":"10.1016/j.coelec.2024.101554","url":null,"abstract":"<div><p>Graphene nanoribbons (GNRs) have emerged as promising candidates for catalysing the oxygen reduction reaction (ORR) due to their unique structural and electronic properties. This review presents a comprehensive overview of recent advances in utilising GNRs as catalysts or support materials for ORR application and discusses the underlying active sites, synthesis strategies, and optimisation approaches. The synergistic effects between GNRs and dopants, heteroatom substitutions and hybridisation with other materials have also been included. Moreover, experimental studies have elucidated the intricate interplay between GNR structure and the ORR kinetics, providing valuable catalyst design and optimisation insights. This review highlights the potential of GNR-based catalysts for ORR electrocatalysis and underscores the ongoing efforts to overcome existing limitations to realise their applicability in future electrochemical energy conversion technologies.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"47 ","pages":"Article 101554"},"PeriodicalIF":7.9,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141416290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrocatalysts for the oxidation of ethanol in proton exchange membrane fuel cells, electrolysis cells, and sensors","authors":"Peter G. Pickup , E. Bradley Easton","doi":"10.1016/j.coelec.2024.101553","DOIUrl":"10.1016/j.coelec.2024.101553","url":null,"abstract":"<div><p>The potential for direct ethanol fuel cells (DEFCs) to provide sustainable, widely accessible power has driven development of electrocatalysts for the ethanol oxidation reaction (EOR) over several decades. However, low power output, low efficiencies, and the production of acetic acid and acetaldehyde byproducts has caused progress to stall. Consequently, interest in this area is transitioning to electrolysis of ethanol to produce green hydrogen and commodity chemicals. Concurrently, applications of DEFC as breath alcohol sensors in breathalyzers are increasing, and this has become an established commercial market for EOR catalysts. Progress in the development of these technologies has been hampered by the limited number of catalysts that have been evaluated in proton exchange membrane cells, the paucity of data on product distributions, and limited gas-phase-sensing studies.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"47 ","pages":"Article 101553"},"PeriodicalIF":7.9,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451910324001145/pdfft?md5=36b025ec8ac69a0c46453d805db16ced&pid=1-s2.0-S2451910324001145-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141408994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lucía Paula Campo Schneider , Maryem Dhrioua , Dirk Ullmer , Franz Egert , Hans Julian Wiggenhauser , Kamal Ghotia , Nicolas Kawerau , Davide Grilli , Fatemeh Razmjooei , Syed Asif Ansar
{"title":"Advancements in hydrogen production using alkaline electrolysis systems: A short review on experimental and simulation studies","authors":"Lucía Paula Campo Schneider , Maryem Dhrioua , Dirk Ullmer , Franz Egert , Hans Julian Wiggenhauser , Kamal Ghotia , Nicolas Kawerau , Davide Grilli , Fatemeh Razmjooei , Syed Asif Ansar","doi":"10.1016/j.coelec.2024.101552","DOIUrl":"10.1016/j.coelec.2024.101552","url":null,"abstract":"<div><p>Although alkaline water electrolysis (AWE) is a highly mature technology for hydrogen production, its potential is hindered by relatively low efficiencies at high current densities. On the other hand, to conform with “RePowerEU” directives, coupling electrolyzers with new renewable energy sources (RES) is highly demanded. However, integrating fluctuating RES poses challenges for the AWE due to increasing gas impurity as the current density decreases. Herein, we revised the most promising recent developments in materials, cell design, and system integration aimed at conquering the aforementioned challenges. It is shown that the implementation of advanced components and control strategies, e.g. electrolyte management, is vital to enhance the efficiency at high current densities and expand the load range of operation by maintaining the high gas purity.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"47 ","pages":"Article 101552"},"PeriodicalIF":7.9,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451910324001133/pdfft?md5=893956bf5f942e50e8e1ddace6b8eb75&pid=1-s2.0-S2451910324001133-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141396896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Long range electron transfer and proton transfer in biology: What do we know and how does it work?","authors":"Nadav Amdursky","doi":"10.1016/j.coelec.2024.101551","DOIUrl":"10.1016/j.coelec.2024.101551","url":null,"abstract":"<div><p>Electron transfer (ET) and proton transfer (PT) events are involved in most of the biochemical processes in biology, such as within the aerobic respiration system and photosynthesis. Whereas most of the ET and PT reactions in biology are short-range on the (sub-)nanometer scale, several biological systems are capable of long-range ET or PT on the hundreds of nanometers to micrometers. This perspective summarizes which biological or bioinspired systems are capable of long-range ET or PT, which suggested mechanisms might explain long-range ET or PT together with the needed molecular basis within the biological material to allow this transport for very long distances. The fundamental difference between long-range ET and PT is discussed as well as design guidelines for new electron- or proton-conductive biological materials.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"47 ","pages":"Article 101551"},"PeriodicalIF":7.9,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141411675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin J. Hardy , Ethan L. Bungay , Cam Mellor , Paul Curnow , J.L. Ross Anderson
{"title":"Building tailor-made bioenergetic proteins and circuits from de novo redox proteins","authors":"Benjamin J. Hardy , Ethan L. Bungay , Cam Mellor , Paul Curnow , J.L. Ross Anderson","doi":"10.1016/j.coelec.2024.101541","DOIUrl":"10.1016/j.coelec.2024.101541","url":null,"abstract":"<div><p>Natural electron-conducting circuits play essential roles in respiration and photosynthesis and are therefore of fundamental importance to all life on earth. These circuits are composed of redox-active cofactors housed within proteins, or multi-subunit protein complexes, facilitating the conduction of electrons in support of transmembrane proton pumping, redox catalysis and the extracellular delivery of electrons to terminal electron acceptors. Though the natural electron-conducting circuitry can be complex, it is possible to recapitulate selected, desirable functions within minimalist <em>de novo</em>-designed proteins. Here we highlight recent advances in the <em>de novo</em> design of redox proteins and enzymes that illustrate the progress and potential of this approach, providing insight into the workings and engineering of their natural counterparts, while creating a readily adaptable and robust set of components for future bioelectronic engineering.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"46 ","pages":"Article 101541"},"PeriodicalIF":7.9,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451910324001029/pdfft?md5=9e6cf478bdd25e41f23004518122d378&pid=1-s2.0-S2451910324001029-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141396568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Towards continuous potentiometric enzymatic biosensors","authors":"Xinxin Xiao , Jens Ulstrup","doi":"10.1016/j.coelec.2024.101549","DOIUrl":"10.1016/j.coelec.2024.101549","url":null,"abstract":"<div><p>Self-management of health and disease control using implantable biosensors is presently evolving strongly. Implantable biosensors require high selectivity and sensitivity, robust stability, temporal resolution, and device miniaturization. Electrochemical enzymatic biosensors that utilize specifically selective enzymes to convert the concentration of biomarker metabolites into electrochemical signals hold great promise to meet these criteria. As for electrochemical enzyme biosensors in continuous glucose monitoring, which have enjoyed great commercial success, amperometric biosensors have so far dominated enzymatic biosensor research and development. Potentiometric enzymatic biosensor research is, however, emerging with increasing strength, in particular due to greater promise for miniaturization. This minireview focuses on how to empower potentiometric enzymatic biosensors with high temporal resolution for continuous <em>in situ</em> monitoring of metabolites using the innovative non-equilibrium approach.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"46 ","pages":"Article 101549"},"PeriodicalIF":7.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451910324001108/pdfft?md5=25ba9ce1e9a0c7b84e6af1eccd2f9dc2&pid=1-s2.0-S2451910324001108-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141278379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonathan M. Larson , Andrew Dopilka , Robert Kostecki
{"title":"Infrared nanoimaging and nanospectroscopy of electrochemical energy storage materials and interfaces","authors":"Jonathan M. Larson , Andrew Dopilka , Robert Kostecki","doi":"10.1016/j.coelec.2024.101548","DOIUrl":"10.1016/j.coelec.2024.101548","url":null,"abstract":"<div><p>Electrochemical interfaces are central to the function and performance of energy storage devices. Thus, the development of new methods to characterize these interfaces, in conjunction with electrochemical performance, is essential for bridging the existing knowledge gaps and accelerating the development of energy storage technologies. Of particular need is the ability to characterize surfaces or interfaces in a non-destructive way with adequate resolution to discern individual structural and chemical building blocks. To this end, sub-diffraction-limit low-energy infrared optical probes that exploit near-field interactions within atomic force microscopy platforms, such as pseudoheterodyne nanoimaging, photothermal nanoimaging and nanospectroscopy, and nanoscale Fourier transform infrared spectroscopy, are all powerful emerging techniques. These are capable of non-destructive surface probing and imaging at nanometer resolution. This review outlines recent efforts to characterize <em>ex situ</em><em>,</em><em>in situ</em><em>,</em>and<em>operando</em> electrode materials and electrochemical interfaces in rechargeable batteries with these advanced infrared near-field probes.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"47 ","pages":"Article 101548"},"PeriodicalIF":7.9,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451910324001091/pdfft?md5=e5feb386d7f632adb48aa69fdf9677f0&pid=1-s2.0-S2451910324001091-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141281568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}