Mikael Maraschin , Mahsa Askari , Veena S. Chauhan , Luis H.Z. Feistel , Samuel A. Olusegun , Jessica Ortega-Ramos , Joseph A. Gauthier
{"title":"Recent developments in modeling the electric double layer with density functional theory","authors":"Mikael Maraschin , Mahsa Askari , Veena S. Chauhan , Luis H.Z. Feistel , Samuel A. Olusegun , Jessica Ortega-Ramos , Joseph A. Gauthier","doi":"10.1016/j.coelec.2025.101654","DOIUrl":null,"url":null,"abstract":"<div><div>Improving our fundamental understanding of charge transfer processes at the electrified double layer currently relies heavily on density functional theory (DFT) simulations as many <em>in situ</em> and <em>operando</em> spectroscopic methods are hindered by the aqueous electrolyte. However, modeling charged states with semi-local DFT faces serious challenges, and several bifurcating strategies have been developed in an attempt to address them. In this mini review, we present a highly abridged overview of some of the challenges faced when modeling charge transfer processes across the electric double layer with DFT. Focusing primarily on charge transfer kinetics, we highlight polarizable continuum models (PCMs) and their use in evaluating energetics in the adiabatic limit of electron transfer, i.e. treating electrons grand canonically during a coupled proton-electron transfer (CPET) reaction. We highlight their use in understanding electrocatalytic processes, in particular the ability to localize transition states at constant potential. Finally, we present our outlook on opportunities for improvement in this critical research area, and nascent methods being developed to test the validity of PCMs and evaluating energetics in the grand canonical ensemble.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"50 ","pages":"Article 101654"},"PeriodicalIF":7.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910325000134","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Improving our fundamental understanding of charge transfer processes at the electrified double layer currently relies heavily on density functional theory (DFT) simulations as many in situ and operando spectroscopic methods are hindered by the aqueous electrolyte. However, modeling charged states with semi-local DFT faces serious challenges, and several bifurcating strategies have been developed in an attempt to address them. In this mini review, we present a highly abridged overview of some of the challenges faced when modeling charge transfer processes across the electric double layer with DFT. Focusing primarily on charge transfer kinetics, we highlight polarizable continuum models (PCMs) and their use in evaluating energetics in the adiabatic limit of electron transfer, i.e. treating electrons grand canonically during a coupled proton-electron transfer (CPET) reaction. We highlight their use in understanding electrocatalytic processes, in particular the ability to localize transition states at constant potential. Finally, we present our outlook on opportunities for improvement in this critical research area, and nascent methods being developed to test the validity of PCMs and evaluating energetics in the grand canonical ensemble.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •