{"title":"Amorphous crystalline heterostructure in electrocatalytic 2D platinum group metals","authors":"Soumen Dutta","doi":"10.1016/j.coelec.2025.101653","DOIUrl":null,"url":null,"abstract":"<div><div>Platinum group metals (PGMs), which are widely explored for developing clean energy technologies, have also undergone extensive morphology and composition tuning to enhance catalytic efficiency. Recently, increasing focus has been placed on phase regulation, particularly in identifying amorphous materials or other unconventional phases with favorable atomic arrangements for electrocatalysis. However, amorphous materials typically suffer from poor stability and insufficient electrical conductivity. To address this, amorphous crystalline (<strong><em>ac</em></strong>)–heterophased PGM-based catalysts, especially in their two-dimensional (2D) morphologies, have been developed, balancing the benefits of both phases with abundantly distributed active sites and fast charge carriers across the hetero-interfaces, offering enhanced electrochemical activity and stability compared with their single-phase counterparts. This review examines the design of heterophased <strong>2D (<em>ac</em>)-PGMs</strong>, either through post-synthetic modification of crystalline nanosheets or via confined-growth/<em>in situ</em> amorphization. It further highlights their significant impact on electrochemical energy storage and conversion and also emphasizes the current challenges and future directions in the development of these advanced materials for energy applications.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"50 ","pages":"Article 101653"},"PeriodicalIF":7.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910325000122","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Platinum group metals (PGMs), which are widely explored for developing clean energy technologies, have also undergone extensive morphology and composition tuning to enhance catalytic efficiency. Recently, increasing focus has been placed on phase regulation, particularly in identifying amorphous materials or other unconventional phases with favorable atomic arrangements for electrocatalysis. However, amorphous materials typically suffer from poor stability and insufficient electrical conductivity. To address this, amorphous crystalline (ac)–heterophased PGM-based catalysts, especially in their two-dimensional (2D) morphologies, have been developed, balancing the benefits of both phases with abundantly distributed active sites and fast charge carriers across the hetero-interfaces, offering enhanced electrochemical activity and stability compared with their single-phase counterparts. This review examines the design of heterophased 2D (ac)-PGMs, either through post-synthetic modification of crystalline nanosheets or via confined-growth/in situ amorphization. It further highlights their significant impact on electrochemical energy storage and conversion and also emphasizes the current challenges and future directions in the development of these advanced materials for energy applications.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •