ACS Central Science最新文献

筛选
英文 中文
Quantum Computing Based Design of Multivariate Porous Materials 基于量子计算的多元多孔材料设计
IF 10.4 1区 化学
ACS Central Science Pub Date : 2025-08-22 DOI: 10.1021/acscentsci.5c00918
Shinyoung Kang, , , Younghun Kim, , and , Jihan Kim*, 
{"title":"Quantum Computing Based Design of Multivariate Porous Materials","authors":"Shinyoung Kang,&nbsp;, ,&nbsp;Younghun Kim,&nbsp;, and ,&nbsp;Jihan Kim*,&nbsp;","doi":"10.1021/acscentsci.5c00918","DOIUrl":"https://doi.org/10.1021/acscentsci.5c00918","url":null,"abstract":"<p >Multivariate (MTV) porous materials exhibit unique structural complexities based on their diverse spatial arrangements of multiple building block combinations. These materials possess potential synergistic functionalities that exceed the sum of their individual components. However, the exponentially increasing design complexity of these materials poses significant challenges for accurate ground-state configuration prediction and design. To address this, we propose a Hamiltonian model for quantum computing that integrates compositional, structural, and balance constraints directly into the Hamiltonian, enabling efficient optimization of the MTV configurations. The model employs a graph-based representation to encode linker types as qubits. Our framework enables quantum encoding of a vast linker design space, allowing representation of exponentially many configurations with linearly scaling qubit resources, and facilitating efficient search for optimal structures based on predefined design variables. To validate our model, a variational quantum circuit was constructed and executed using the Sampling Variational Quantum Eigensolver (VQE) algorithm in the IBM Qiskit. Simulations on experimentally known MTV porous materials (e.g., Cu-THQ-HHTP, Py-MV-DBA-COF, MUF-7, and SIOC-COF2) successfully reproduced their ground-state configurations, demonstrating the validity of our model. Furthermore, VQE calculations were performed on a real IBM 127-qubit quantum hardware for validation purposes signaling a first step toward a practical quantum algorithm for the rational design of porous materials.</p><p >Quantum algorithms were developed to identify optimal multivariate porous material by exploring linker configurations encoded in qubits and were evaluated by the proposed Hamiltonian model.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 10","pages":"1921–1932"},"PeriodicalIF":10.4,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c00918","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145332088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the Nanoconfinement Effect in CO2 Electroreduction to CH4 over Mesoporous Cu-CeO2 Nanospheres 揭示介孔Cu-CeO2纳米球上CO2电还原成CH4的纳米约束效应
IF 10.4 1区 化学
ACS Central Science Pub Date : 2025-08-22 DOI: 10.1021/acscentsci.5c01035
Lei Xiong, , , Xianbiao Fu, , , Wenpu Fan, , , Jun Zhang, , , Zixuan Zheng, , , Shaojie Lu, , , Dong Wang, , , Mingze Hao, , and , Qin Yue*, 
{"title":"Unveiling the Nanoconfinement Effect in CO2 Electroreduction to CH4 over Mesoporous Cu-CeO2 Nanospheres","authors":"Lei Xiong,&nbsp;, ,&nbsp;Xianbiao Fu,&nbsp;, ,&nbsp;Wenpu Fan,&nbsp;, ,&nbsp;Jun Zhang,&nbsp;, ,&nbsp;Zixuan Zheng,&nbsp;, ,&nbsp;Shaojie Lu,&nbsp;, ,&nbsp;Dong Wang,&nbsp;, ,&nbsp;Mingze Hao,&nbsp;, and ,&nbsp;Qin Yue*,&nbsp;","doi":"10.1021/acscentsci.5c01035","DOIUrl":"https://doi.org/10.1021/acscentsci.5c01035","url":null,"abstract":"<p >Nanoconfinement provides a promising strategy to promote the electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) owing to enhanced reactant enrichment and collision. However, the nanoconfinement influence on the CH<sub>4</sub> selectivity from the CO<sub>2</sub>RR with related regulation mechanism is unclear. Herein, a series of mesoporous CeO<sub>2</sub> loaded Cu catalysts with controllable pore size (1.3–5.5 nm) are designed to modulate the CO<sub>2</sub>RR selectivity to CH<sub>4</sub>. It is found that decreasing the pore size can apparently enhance the CO<sub>2</sub>RR performance while inhibiting the HER activity. Moreover, a volcano-type relationship between the CH<sub>4</sub> selectivity and the pore diameter is observed among these catalysts, while Cu-mCeO<sub>2</sub>-3.0 (pore diameter of 3.0 nm) shows the highest CH<sub>4</sub> Faradaic efficiency (66.1 ± 2.9%). The in situ experiments and DFT calculations illustrate that a smaller pore size with stronger confinement over Cu-mCeO<sub>2</sub>-<i>x</i> can promote the adsorption and transformation of reactants (*CO, *CHO, etc.) for CH<sub>4</sub> production, but too narrow confined space (1.3 nm) will contribute to much higher intermediate coverage and promote their collision for C–C coupling to C<sub>2+</sub> products instead, thus reducing the CH<sub>4</sub> selectivity. This work provides designing insights into metal/oxide catalysts with controllable pore size to study the nanoconfinement effect on the CO<sub>2</sub>RR-to-CH<sub>4</sub> activity, which can be extended to other oxide-based catalytic reactions.</p><p >This study establishes a correlation between the CO<sub>2</sub>RR-to-CH<sub>4</sub> activity and the pore size of mesoporous Cu-CeO<sub>2</sub> catalysts, elucidating the underlying regulation mechanisms.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 10","pages":"1902–1910"},"PeriodicalIF":10.4,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c01035","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145332089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precisely Integrated Mesoporous Anode Enabling Fast Pseudocapacitive Sodium-Ion Storage 精确集成介孔阳极实现快速伪电容性钠离子存储
IF 10.4 1区 化学
ACS Central Science Pub Date : 2025-08-18 DOI: 10.1021/acscentsci.5c00616
Shuang Li, , , Jiecheng Chen, , , Xin Miao, , , Xu Wen, , , You Zhou, , , Bingxian Chu, , , Wendi Wang, , , Yanyan Yu, , , Ziyang Guo*, , and , Kun Lan*, 
{"title":"Precisely Integrated Mesoporous Anode Enabling Fast Pseudocapacitive Sodium-Ion Storage","authors":"Shuang Li,&nbsp;, ,&nbsp;Jiecheng Chen,&nbsp;, ,&nbsp;Xin Miao,&nbsp;, ,&nbsp;Xu Wen,&nbsp;, ,&nbsp;You Zhou,&nbsp;, ,&nbsp;Bingxian Chu,&nbsp;, ,&nbsp;Wendi Wang,&nbsp;, ,&nbsp;Yanyan Yu,&nbsp;, ,&nbsp;Ziyang Guo*,&nbsp;, and ,&nbsp;Kun Lan*,&nbsp;","doi":"10.1021/acscentsci.5c00616","DOIUrl":"https://doi.org/10.1021/acscentsci.5c00616","url":null,"abstract":"<p >Sodium-ion batteries (SIBs) are considered potential alternatives to lithium-ion batteries (LIBs) due to the abundant resources and low sodium cost. The rational nanostructural design for anode materials plays a crucial role in SIBs. TiO<sub>2</sub>, as a common electrode material, suffers from the drawbacks of low specific surface area and poor conductivity. To overcome these limitations, we propose a strategy combining solvent evaporation-induced self-assembly and chemical oxidative polymerization to construct an ultrathin polypyrrole (PPy)-coated mesoporous TiO<sub>2</sub> microsphere (meso-TiO<sub>2</sub>@PPy) core–shell structure. The combination of the mesoporous structure and the conductive coating endows the micrometer-sized TiO<sub>2</sub> spheres with high specific surface area, excellent conductivity, and abundant sodium-ion diffusion pathways, leading to a dominant pseudocapacitance (94%) of total charge storage. Remarkably, such integration allows for a high reversible capacity of 160.6 mAh g<sup>–1</sup> at 1 A g<sup>–1</sup>, good rate performance, and stable cycling performance (capacity retention of 80.8% after 2000 cycles). Our research provides a pathway for the design of compositive anode materials for high-performance SIBs.</p><p >A type of integrated mesoporous TiO<sub>2</sub>−PPy composite is designed as an anode to guarantee high surface area, tap density, and conductivity for overall enhancement of pseudocapacitive Na<sup>+</sup> storage.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 10","pages":"1892–1901"},"PeriodicalIF":10.4,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c00616","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145332087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Long-Lost Coffee Bean Tastes as Good as the Best─To Understand Why, Scientists Turn to Chemistry 失传已久的咖啡豆味道和最好的一样好──为了了解其中的原因,科学家们求助于化学
IF 10.4 1区 化学
ACS Central Science Pub Date : 2025-08-18 DOI: 10.1021/acscentsci.5c01454
Marta Zaraska, 
{"title":"A Long-Lost Coffee Bean Tastes as Good as the Best─To Understand Why, Scientists Turn to Chemistry","authors":"Marta Zaraska,&nbsp;","doi":"10.1021/acscentsci.5c01454","DOIUrl":"https://doi.org/10.1021/acscentsci.5c01454","url":null,"abstract":"<p >The climate-resistant bean boasts a chemical profile similar to Arabica’s.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 9","pages":"1521–1523"},"PeriodicalIF":10.4,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c01454","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145117411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning the Ultimate Strain of Single and Double Network Gels Through Reactive Strand Extension 通过反应链延伸调节单双网凝胶的极限应变
IF 10.4 1区 化学
ACS Central Science Pub Date : 2025-08-15 DOI: 10.1021/acscentsci.5c00932
Xujun Zheng, , , Chun-Yu Chiou, , , Sunay Dilara Ekim, , , Tatiana B. Kouznetsova, , , Jafer Vakil, , , Yixin Hu, , , Liel Sapir, , , Danyang Chen, , , Zi Wang, , , Michael Rubinstein, , , Jian Ping Gong, , , Nancy R. Sottos*, , and , Stephen L. Craig*, 
{"title":"Tuning the Ultimate Strain of Single and Double Network Gels Through Reactive Strand Extension","authors":"Xujun Zheng,&nbsp;, ,&nbsp;Chun-Yu Chiou,&nbsp;, ,&nbsp;Sunay Dilara Ekim,&nbsp;, ,&nbsp;Tatiana B. Kouznetsova,&nbsp;, ,&nbsp;Jafer Vakil,&nbsp;, ,&nbsp;Yixin Hu,&nbsp;, ,&nbsp;Liel Sapir,&nbsp;, ,&nbsp;Danyang Chen,&nbsp;, ,&nbsp;Zi Wang,&nbsp;, ,&nbsp;Michael Rubinstein,&nbsp;, ,&nbsp;Jian Ping Gong,&nbsp;, ,&nbsp;Nancy R. Sottos*,&nbsp;, and ,&nbsp;Stephen L. Craig*,&nbsp;","doi":"10.1021/acscentsci.5c00932","DOIUrl":"https://doi.org/10.1021/acscentsci.5c00932","url":null,"abstract":"<p >The stretchability (ability to be elongated) and toughness (capacity to absorb energy before breaking) of polymer network materials, such as elastomers and hydrogels, often determine their utility and lifetime. Direct correlations between the molecular behavior of polymer network components and the physical properties of the network inform the design of materials with enhanced performance, extended lifetime, and minimized waste stream. Here, we report the impact of the fused ring size in bicyclic cyclobutane mechanophores within the strands of polymer network gels. The mechanophores and their polymer strands share the same initial covalent contour length, whereas the capacity for reactive strand extension (RSE) is varied by changing the size of the ring fused to the cyclobutane from 5 to 12 carbon atoms. We observe the first evidence of covalent RSE effects in a single-network gel, and strands with greater RSE lead to gels with greater stretchability and toughness. The same qualitative correlation between molecular and macroscopic extension is also observed in DN hydrogels with mechanophores in the prestretched first network.</p><p >The strain at break of polymer network materials can be tuned by varying the molecular length hidden behind embedded cyclobutane mechanophores.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 10","pages":"1882–1891"},"PeriodicalIF":10.4,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c00932","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145332086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical Control of Membrane Viscosity Modulates ER-to-Golgi Trafficking 膜粘度的光学控制调节er到高尔基体的运输
IF 10.4 1区 化学
ACS Central Science Pub Date : 2025-08-12 DOI: 10.1021/acscentsci.5c00606
Noemi Jiménez-Rojo, , , Suihan Feng, , , Johannes Morstein*, , , Stefanie D. Pritzl, , , Antonino Asaro, , , Sergio López, , , Yun Xu, , , Takeshi Harayama, , , Nynke A. Vepřek, , , Christopher J. Arp, , , Martin Reynders, , , Alexander J. E. Novak, , , Evgeny Kanshin, , , Jan Lipfert, , , Beatrix Ueberheide, , , Manuel Muñiz, , , Theobald Lohmüller, , , Howard Riezman*, , and , Dirk Trauner*, 
{"title":"Optical Control of Membrane Viscosity Modulates ER-to-Golgi Trafficking","authors":"Noemi Jiménez-Rojo,&nbsp;, ,&nbsp;Suihan Feng,&nbsp;, ,&nbsp;Johannes Morstein*,&nbsp;, ,&nbsp;Stefanie D. Pritzl,&nbsp;, ,&nbsp;Antonino Asaro,&nbsp;, ,&nbsp;Sergio López,&nbsp;, ,&nbsp;Yun Xu,&nbsp;, ,&nbsp;Takeshi Harayama,&nbsp;, ,&nbsp;Nynke A. Vepřek,&nbsp;, ,&nbsp;Christopher J. Arp,&nbsp;, ,&nbsp;Martin Reynders,&nbsp;, ,&nbsp;Alexander J. E. Novak,&nbsp;, ,&nbsp;Evgeny Kanshin,&nbsp;, ,&nbsp;Jan Lipfert,&nbsp;, ,&nbsp;Beatrix Ueberheide,&nbsp;, ,&nbsp;Manuel Muñiz,&nbsp;, ,&nbsp;Theobald Lohmüller,&nbsp;, ,&nbsp;Howard Riezman*,&nbsp;, and ,&nbsp;Dirk Trauner*,&nbsp;","doi":"10.1021/acscentsci.5c00606","DOIUrl":"https://doi.org/10.1021/acscentsci.5c00606","url":null,"abstract":"<p >The lipid composition of cellular membranes is highly dynamic and undergoes continuous remodeling, affecting the biophysical properties critical to biological function. Here, we introduce an optical approach to manipulate membrane viscosity based on an exogenous synthetic fatty acid with an azobenzene photoswitch, termed <b>FAAzo4</b>. Cells rapidly incorporate <b>FAAzo4</b> into phosphatidylcholine and phosphatidylethanolamine in a concentration- and cell type-dependent manner. This generates photoswitchable PC and PE analogs, which are predominantly located in the endoplasmic reticulum. Irradiation causes a rapid photoisomerization that decreases membrane viscosity with high spatiotemporal precision. We use the resulting “PhotoCells” to study the impact of membrane viscosity on ER-to-Golgi transport and demonstrate that this two-step process has distinct membrane viscosity requirements. Our approach provides an unprecedented way of manipulating membrane biophysical properties directly in living cells and opens novel avenues to probe the effects of viscosity in a wide variety of biological processes.</p><p >PhotoCells enable the dynamic control of protein viscosity in living cells. A decrease of membrane viscosity increases the amount of protein recruited at ERES but slows down the transport to Golgi.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 9","pages":"1736–1752"},"PeriodicalIF":10.4,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c00606","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145117243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial Chiral Trinuclear Zn Catalysts: Design, Self-Assembly and Unprecedented Efficiency in Asymmetric Hydroboration of Ketones 人工手性三核锌催化剂:酮类不对称硼氢化反应的设计、自组装和空前效率
IF 10.4 1区 化学
ACS Central Science Pub Date : 2025-08-12 DOI: 10.1021/acscentsci.5c01067
Jingxi He, , , Shuxin Jiang, , , Yu Qiu, , , Yingchao Liu, , , Kuiling Ding*, , and , Xiaoming Wang*, 
{"title":"Artificial Chiral Trinuclear Zn Catalysts: Design, Self-Assembly and Unprecedented Efficiency in Asymmetric Hydroboration of Ketones","authors":"Jingxi He,&nbsp;, ,&nbsp;Shuxin Jiang,&nbsp;, ,&nbsp;Yu Qiu,&nbsp;, ,&nbsp;Yingchao Liu,&nbsp;, ,&nbsp;Kuiling Ding*,&nbsp;, and ,&nbsp;Xiaoming Wang*,&nbsp;","doi":"10.1021/acscentsci.5c01067","DOIUrl":"https://doi.org/10.1021/acscentsci.5c01067","url":null,"abstract":"<p >The development of artificial catalysts with efficiency that can rival those of Nature’s enzymes represents one of the foremost yet challenging goals in homogeneous metal catalysis. Inspired by the exceptional performance of metalloenzymes, the design and development of highly efficient bi/multinuclear catalysts via judicious ligand design, by taking advantage of the cooperative action of the proximal catalytic sites, has attracted great attention. Herein, we report the self-assembly of a chiral hexadentate BINOL-dipyox ligand with zinc acetate into a well-defined trinuclear zinc complex, which demonstrated ultrahigh catalytic productivity in the enantioselective hydroboration of ketones with an unprecedented turnover number (TON) of 19,400 at an extremely low catalyst loading (0.005 mol %). Mechanistic investigations reveal that a cooperative Lewis acid activation mode is operating in the catalytic process, hence, underscoring the unique advantages of the trinuclear architecture.</p><p >This work reports the rational design and self-assembly of an artificial chiral trinuclear zinc catalyst, which exhibits exceptional efficiency in enantioselective ketone hydroboration.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 9","pages":"1773–1783"},"PeriodicalIF":10.4,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c01067","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145117244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Assessment of Chemical Diversity in Microbial Natural Products 微生物天然产物化学多样性的评价
IF 10.4 1区 化学
ACS Central Science Pub Date : 2025-08-12 DOI: 10.1021/acscentsci.5c00804
Roger G. Linington*, 
{"title":"An Assessment of Chemical Diversity in Microbial Natural Products","authors":"Roger G. Linington*,&nbsp;","doi":"10.1021/acscentsci.5c00804","DOIUrl":"https://doi.org/10.1021/acscentsci.5c00804","url":null,"abstract":"<p >Natural products continue to play important roles in biomedical, agricultural and ecological science. Yet despite ongoing advances in “omics” technologies, including genomics, transcriptomics, phenomics and metabolomics, there is still no clear consensus on the scope and scale of chemical diversity in the natural world. The evolution and maturation of chemical databases for natural products offer opportunities to explore this question from a range of different perspectives. This Outlook will use data from the Natural Products Atlas to examine rates of similarity and variation among biosynthetic classes of molecules, to explore how structure can be related to function, and to examine the scope and scale of new scaffold discovery in the current era of natural products science. It presents an examination of known chemical diversity, investigates what this diversity can tell us about potential translational applications, and explores how current knowledge informs what we might expect to discover in future studies.</p><p >Open-source databases inform our understanding of the known landscape of natural products. These analyses can identify themes among known compound classes and highlight new avenues for investigation.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 9","pages":"1536–1545"},"PeriodicalIF":10.4,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c00804","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145117242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
This Striking Blue Made Pigment History. Could Red Be Next? 这种醒目的蓝色创造了颜料的历史。红色会是下一个吗?
IF 10.4 1区 化学
ACS Central Science Pub Date : 2025-08-11 DOI: 10.1021/acscentsci.5c01396
Carrie Arnold, 
{"title":"This Striking Blue Made Pigment History. Could Red Be Next?","authors":"Carrie Arnold,&nbsp;","doi":"10.1021/acscentsci.5c01396","DOIUrl":"https://doi.org/10.1021/acscentsci.5c01396","url":null,"abstract":"<p >Mas Subramanian’s hunt to create red that’s vivid, durable, and safe.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 9","pages":"1518–1520"},"PeriodicalIF":10.4,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c01396","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145117241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bifunctional Cysteine-Engineered CAR-T Cells Enable Thiol-Mediated Targeting to Overcome Antigen Escape in B Cell Lymphoma 双功能半胱氨酸工程CAR-T细胞使巯基介导的靶向克服B细胞淋巴瘤的抗原逃逸
IF 10.4 1区 化学
ACS Central Science Pub Date : 2025-08-07 DOI: 10.1021/acscentsci.5c00816
Jost Lühle, , , Simon Krost, , , Felix Goerdeler, , , Aina Valentí, , , Elena Shanin, , , Christian Seitz, , , Peter H. Seeberger, , and , Oren Moscovitz*, 
{"title":"Bifunctional Cysteine-Engineered CAR-T Cells Enable Thiol-Mediated Targeting to Overcome Antigen Escape in B Cell Lymphoma","authors":"Jost Lühle,&nbsp;, ,&nbsp;Simon Krost,&nbsp;, ,&nbsp;Felix Goerdeler,&nbsp;, ,&nbsp;Aina Valentí,&nbsp;, ,&nbsp;Elena Shanin,&nbsp;, ,&nbsp;Christian Seitz,&nbsp;, ,&nbsp;Peter H. Seeberger,&nbsp;, and ,&nbsp;Oren Moscovitz*,&nbsp;","doi":"10.1021/acscentsci.5c00816","DOIUrl":"https://doi.org/10.1021/acscentsci.5c00816","url":null,"abstract":"<p >Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of hematologic malignancies; however, durable remissions remain limited due to antigen-negative cancer relapse, where tumor cells downregulate or lose the targeted antigen to evade immune recognition. To address this challenge, we developed cysteine-engineered CAR (CysCAR) T cells that redirect T cells to target cancer cells based on extracellular redox imbalances and the altered thiol/disulfide ratios, a marker we identified on B cell lymphomas. Here, we show that CysCAR-T cells, engineered with different cysteine-modified antibody fragments, exhibit a potent and specific cytotoxicity <i>in vitro</i> across various B cell lymphoma (BCL) subtypes, even in antigen escape models. Moreover, by integrating cysteine engineering with clinically used anti-CD19 CAR-T cells, we enabled simultaneous targeting of CD19 and altered redox states on BCL, potentially reducing the risk of antigen escape. In a pilot <i>in vivo</i> study, these bifunctional CD19-CysCAR-T cells suppressed tumor growth and prolonged survival of BCL-bearing mice without inducing systemic toxicity. Given that aberrant exofacial redox states are a hallmark of multiple cancers, our findings suggest a promising strategy to enhance the efficacy of anti-CD19 CAR-T cell therapy, overcome antigen escape, and reduce tumor relapse in BCL, with potential applicability to other malignancies.</p><p >Thiol-mediated engineering of CAR-T cells overcomes antigen escape in BCL with potential applicability to other malignancies.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 10","pages":"1852–1861"},"PeriodicalIF":10.4,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c00816","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145332101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信