{"title":"Carbocyclic C-C Bond Formation: Intramolecular Radical Ring Closure to Yield Diastereomerically Pure (7′S-Me- or 7′R-Me-) Carba-LNA Nucleotide Analogs","authors":"Oleksandr Plashkevych, Ram Shankar Upadhayaya, Jyoti Chattopadhyaya","doi":"10.1002/cpnc.29","DOIUrl":"10.1002/cpnc.29","url":null,"abstract":"<p>In light of the impressive gene-silencing properties of carba-LNA modified oligo DNA and RNA, both in antisense RNA and siRNA approaches, which have been confirmed as proof-of-concept for biochemical applications in post-transcriptional gene silencing, we envision the true potential of carba-LNA modifications to be revealed soon. Herein we provide detailed protocols for synthesis of carba-LNA-A, -G, -<sup>5-Me</sup>C, and -T nucleosides on a medium/large scale (gram scale), as well as important guidelines for incorporation of these modified carba-LNAs into DNA or RNA oligonucleotides. Creation of a stereoselective C-C bond during the 5-<i>exo</i> radical intramolecular cyclization involves trapping of a C2′ radical intermediate intramolecularly by the vicinal double bond of a C4′-tethered ─CH<sub>2</sub>-CH═CH<sub>2</sub> group. All diastereomers of substituted carba-LNAs are now available in pure form. The present procedure allows carba-LNA to be commercialized for medicinal or biotechnological purposes. © 2017 by John Wiley & Sons, Inc.</p>","PeriodicalId":10966,"journal":{"name":"Current Protocols in Nucleic Acid Chemistry","volume":"69 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpnc.29","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35101789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0