A High-Throughput Process for the Solid-Phase Purification of Synthetic DNA Sequences

Q4 Chemistry
Andrzej Grajkowski, Jacek Cieślak, Serge L. Beaucage
{"title":"A High-Throughput Process for the Solid-Phase Purification of Synthetic DNA Sequences","authors":"Andrzej Grajkowski,&nbsp;Jacek Cieślak,&nbsp;Serge L. Beaucage","doi":"10.1002/cpnc.31","DOIUrl":null,"url":null,"abstract":"<p>An efficient process for the purification of synthetic phosphorothioate and native DNA sequences is presented. The process is based on the use of an aminopropylated silica gel support functionalized with aminooxyalkyl functions to enable capture of DNA sequences through an oximation reaction with the keto function of a linker conjugated to the 5′-terminus of DNA sequences. Deoxyribonucleoside phosphoramidites carrying this linker, as a 5′-hydroxyl protecting group, have been synthesized for incorporation into DNA sequences during the last coupling step of a standard solid-phase synthesis protocol executed on a controlled pore glass (CPG) support. Solid-phase capture of the nucleobase- and phosphate-deprotected DNA sequences released from the CPG support is demonstrated to proceed near quantitatively. Shorter than full-length DNA sequences are first washed away from the capture support; the solid-phase purified DNA sequences are then released from this support upon reaction with tetra-<i>n</i>-butylammonium fluoride in dry dimethylsulfoxide (DMSO) and precipitated in tetrahydrofuran (THF). The purity of solid-phase-purified DNA sequences exceeds 98%. The simulated high-throughput and scalability features of the solid-phase purification process are demonstrated without sacrificing purity of the DNA sequences. © 2017 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":10966,"journal":{"name":"Current Protocols in Nucleic Acid Chemistry","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpnc.31","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Nucleic Acid Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpnc.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 6

Abstract

An efficient process for the purification of synthetic phosphorothioate and native DNA sequences is presented. The process is based on the use of an aminopropylated silica gel support functionalized with aminooxyalkyl functions to enable capture of DNA sequences through an oximation reaction with the keto function of a linker conjugated to the 5′-terminus of DNA sequences. Deoxyribonucleoside phosphoramidites carrying this linker, as a 5′-hydroxyl protecting group, have been synthesized for incorporation into DNA sequences during the last coupling step of a standard solid-phase synthesis protocol executed on a controlled pore glass (CPG) support. Solid-phase capture of the nucleobase- and phosphate-deprotected DNA sequences released from the CPG support is demonstrated to proceed near quantitatively. Shorter than full-length DNA sequences are first washed away from the capture support; the solid-phase purified DNA sequences are then released from this support upon reaction with tetra-n-butylammonium fluoride in dry dimethylsulfoxide (DMSO) and precipitated in tetrahydrofuran (THF). The purity of solid-phase-purified DNA sequences exceeds 98%. The simulated high-throughput and scalability features of the solid-phase purification process are demonstrated without sacrificing purity of the DNA sequences. © 2017 by John Wiley & Sons, Inc.

Abstract Image

合成DNA序列固相纯化的高通量工艺
提出了一种高效的合成硫代磷酸酯和天然DNA序列的纯化方法。该工艺是基于使用氨基基烷基功能化的氨丙化硅胶载体,通过与DNA序列5 '端共轭的连接器的酮功能的氧化反应来捕获DNA序列。携带该连接体的脱氧核糖核苷磷酰胺作为5 ' -羟基保护基团,在受控孔玻璃(CPG)载体上的标准固相合成程序的最后一步被合成并整合到DNA序列中。从CPG载体中释放的核碱基和磷酸盐去保护DNA序列的固相捕获被证明是接近定量的。短于全长的DNA序列首先从捕获支架上冲洗掉;固相纯化的DNA序列在干燥的二甲基亚砜(DMSO)中与四正丁基氟化铵反应后从该载体中释放出来,并在四氢呋喃(THF)中沉淀。固相纯化的DNA序列纯度超过98%。在不牺牲DNA序列纯度的情况下,模拟了固相纯化过程的高通量和可扩展性特征。©2017 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Protocols in Nucleic Acid Chemistry
Current Protocols in Nucleic Acid Chemistry Chemistry-Organic Chemistry
自引率
0.00%
发文量
0
期刊介绍: Published in association with International Society for Nucleosides, Nucleotides & Nucleic Acids (IS3NA) , Current Protocols in Nucleic Acid Chemistry is equally valuable for biotech, pharmaceutical, and academic labs. It is the resource for designing and running successful research projects in the rapidly growing and changing field of nucleic acid, nucleotide, and nucleoside research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信