A. Galda, Eesh Gupta, J. Falla, Xiaoyuan Liu, Danylo Lykov, Y. Alexeev, Ilya Safro
{"title":"Similarity-based parameter transferability in the quantum approximate optimization algorithm","authors":"A. Galda, Eesh Gupta, J. Falla, Xiaoyuan Liu, Danylo Lykov, Y. Alexeev, Ilya Safro","doi":"10.3389/frqst.2023.1200975","DOIUrl":"https://doi.org/10.3389/frqst.2023.1200975","url":null,"abstract":"The quantum approximate optimization algorithm (QAOA) is one of the most promising candidates for achieving quantum advantage through quantum-enhanced combinatorial optimization. A near-optimal solution to the combinatorial optimization problem is achieved by preparing a quantum state through the optimization of quantum circuit parameters. Optimal QAOA parameter concentration effects for special MaxCut problem instances have been observed, but a rigorous study of the subject is still lacking. In this work we show clustering of optimal QAOA parameters around specific values; consequently, successful transferability of parameters between different QAOA instances can be explained and predicted based on local properties of the graphs, including the type of subgraphs (lightcones) from which graphs are composed as well as the overall degree of nodes in the graph (parity). We apply this approach to several instances of random graphs with a varying number of nodes as well as parity and show that one can use optimal donor graph QAOA parameters as near-optimal parameters for larger acceptor graphs with comparable approximation ratios. This work presents a pathway to identifying classes of combinatorial optimization instances for which variational quantum algorithms such as QAOA can be substantially accelerated.","PeriodicalId":108649,"journal":{"name":"Frontiers in Quantum Science and Technology","volume":"114 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128175495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soumyabrata Paul, S. Lakshmibala, V. Balakrishnan, S. Ramanan
{"title":"A tomographic approach to the sum uncertainty relation and quantum entanglement in continuous variable systems","authors":"Soumyabrata Paul, S. Lakshmibala, V. Balakrishnan, S. Ramanan","doi":"10.3389/frqst.2023.1131798","DOIUrl":"https://doi.org/10.3389/frqst.2023.1131798","url":null,"abstract":"Entropic uncertainty relations (EURs) have been examined in various contexts, primarily in qubit systems, including their links with entanglement, as they subsume the Heisenberg uncertainty principle. With their genesis in the Shannon entropy, EURs find applications in quantum information and quantum optics. EURs are state-dependent, and the state has to be reconstructed from tomograms (which are histograms readily available from experiments). This is a challenge when the Hilbert space is large, as in continuous variable (CV) systems and certain hybrid quantum (HQ) systems. A viable alternative approach therefore is to extract as much information as possible about the unknown quantum state directly from appropriate tomograms. Many variants of EURs can be extracted from tomograms, even for CV systems. In earlier work we have defined many tomographic entanglement indicators (TEIs) that can be readily calculated from tomograms without knowledge of the density matrix, and have reported on their efficacy as entanglement indicators in various contexts in both CV and HQ systems. The specific objectives of the present work are as follows: (i) To use the tomographic approach to investigate the links between EURs and TEIs in CV and HQ systems as they evolve in time. (ii) To identify the TEI that most closely tracks the temporal evolution of EURs. We consider two generic systems. The first is a multilevel atom modeled as a nonlinear oscillator interacting with a quantized radiation field. The second is the Λ-atom interacting with two radiation fields. The former model accomodates investigations on the role of the initial state of the field and the ratio of the strengths of interaction and nonlinearity in the connection between TEIs and EURs. The second model opens up the possibility of examining the connection between mixed state bipartite entanglement and EURs, when the number of atomic levels is finite. Since the tomogram respects the requirements of classical probability theory, this effort also sheds light on the extent to which TEIs reflect the temporal behaviour of those EURs which are rooted in the Shannon entropy.","PeriodicalId":108649,"journal":{"name":"Frontiers in Quantum Science and Technology","volume":"08 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127392020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Engineering sub-10 nm fluorescent nanodiamonds for quantum enhanced biosensing","authors":"M. Alkahtani, Yahya A. Alzahrani, P. Hemmer","doi":"10.3389/frqst.2023.1202231","DOIUrl":"https://doi.org/10.3389/frqst.2023.1202231","url":null,"abstract":"There is an increasing interest in the sensing of magnetic, electric, and temperature effects in biological systems on the nanoscale. While there are existing classical sensors, the possibility of using quantum systems promises improved sensitivity and faster acquisition time. So far, much progress has been made in diamond color centers like the nitrogen-vacancy (NV) which not only satisfy key requirements for biosensing, like extraordinary photostability and non-toxicity, but they also show promise as room-temperature quantum computers/sensors. Unfortunately, the most-impressive demonstrations have been done in bulk diamond, since NVs in fluorescent nanodiamonds (FNDs) tend to have inferior properties. Yet FNDs are required for widespread nanoscale biosensing. In order for FND-based quantum sensors to approach the performance of bulk diamond, novel approaches are needed for their fabrication. To address this need we discuss opportunities for engineering the growth of FNDs.","PeriodicalId":108649,"journal":{"name":"Frontiers in Quantum Science and Technology","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131321781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enhu Diao, Yurong He, Xuhong Liu, Qiang Tong, Tao Yang, Xiaotong Liu, J. P. Lewis
{"title":"First principles data-driven potentials for prediction of iron carbide clusters","authors":"Enhu Diao, Yurong He, Xuhong Liu, Qiang Tong, Tao Yang, Xiaotong Liu, J. P. Lewis","doi":"10.3389/frqst.2023.1190522","DOIUrl":"https://doi.org/10.3389/frqst.2023.1190522","url":null,"abstract":"Many have reported the use of quantum chemistry approaches for evaluating the catalytic properties of iron carbide clusters. Unfortunately, structural energy calculations are computationally expensive when using density functional theory. The computational cost is prohibitive for high-throughput simulations with large length and time scales. In this paper, we generate data from 177 k clusters and choose state-of-the-art machine learning models within physical chemistry to train the features of this data. The generated potential gives a very high prediction accuracy on the order of the structure stability and achieves better adaptability/tolerance to poor structures of clusters. In addition, we use the machine learning potential to assist in high-throughput data collection and the prediction of hydrogen adsorption sites on cluster surfaces. We achieve more stable adsorption locations of the hydrogen atom more rapidly compared with traditional quantum chemical calculations.","PeriodicalId":108649,"journal":{"name":"Frontiers in Quantum Science and Technology","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122282916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of non-Markovian evolution on characterizations of quantum thermodynamics","authors":"Devvrat Tiwari, Subhashis Banerjee","doi":"10.3389/frqst.2023.1207552","DOIUrl":"https://doi.org/10.3389/frqst.2023.1207552","url":null,"abstract":"Here, we study the impact of non-Markovian evolution on prominent characteristics of quantum thermodynamics such as ergotropy and power. These are benchmarked by the behavior of the quantum speed limit time. We make use of both geometric-based, particularly the quantum Fisher and Wigner–Yanase information metric, and physical properties-based measures, particularly the relative purity measure and relative entropy of coherence measure, to compute the quantum speed limit time. A simple non-Markovian model of a qubit in a bosonic bath exhibiting non-Markovian amplitude damping evolution is considered, which, from the quantum thermodynamic perspective with finite initial ergotropy, can be envisaged as a quantum battery. To this end, we explore the connections between the physical properties-based measures of the quantum speed limit time and the coherent component of ergotropy. The non-Markovian evolution is shown to impact the recharging process of the quantum battery. Furthermore, a connection between the discharging–charging cycle of the quantum battery and the geometric measures of the quantum speed limit time is observed.","PeriodicalId":108649,"journal":{"name":"Frontiers in Quantum Science and Technology","volume":"99 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115544475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the relationship between students’ conceptual understanding and model thinking in quantum optics","authors":"M. Ubben, P. Bitzenbauer","doi":"10.3389/frqst.2023.1207619","DOIUrl":"https://doi.org/10.3389/frqst.2023.1207619","url":null,"abstract":"Learning quantum physics is essential for understanding the physical world. However, learning about quantum phenomena and principles poses a challenge as many of the phenomena that are observed at the quantum level cannot be directly observed or intuitively understood in terms of classical physics or thinking. Models play an important role in learning quantum physics by providing conceptual frameworks and visual representations that allow reasoning about and predicting the behavior of quantum systems. Therefore, understanding models is an essential part of learning quantum physics. In this article, we report the results of an exploratory survey study (N = 116) investigating the relationship between secondary school students’ conceptual understanding and model thinking in quantum optics with a particular focus on photons. The findings suggest a strong positive correlation between students’ functional understanding of the photon model and their conceptual understanding of quantum optics. This study contributes to our understanding of how students learn and make sense of quantum concepts through the use of models and may inform the development of instructional strategies for quantum physics education and outreach.","PeriodicalId":108649,"journal":{"name":"Frontiers in Quantum Science and Technology","volume":"129 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126931450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Zalivako, A. Borisenko, Ilya A. Semerikov, A. Korolkov, P. Sidorov, K. Galstyan, N. Semenin, V. Smirnov, M. A. Aksenov, A. Fedorov, K. Khabarova, N. Kolachevsky
{"title":"Continuous dynamical decoupling of optical 171Yb+ qudits with radiofrequency fields","authors":"I. Zalivako, A. Borisenko, Ilya A. Semerikov, A. Korolkov, P. Sidorov, K. Galstyan, N. Semenin, V. Smirnov, M. A. Aksenov, A. Fedorov, K. Khabarova, N. Kolachevsky","doi":"10.3389/frqst.2023.1228208","DOIUrl":"https://doi.org/10.3389/frqst.2023.1228208","url":null,"abstract":"The use of multilevel quantum information carriers, also known as qudits, has attracted significant interest as a way of further scaling quantum computing devices. However, such multilevel systems usually express shorter coherence time than their two-level counterparts, which limits their computational potential. We thus propose and experimentally demonstrate two approaches for realizing the continuous dynamical decoupling of magnetic-sensitive states with mF = ±1 for qudits encoded in optical transition of trapped 171Yb+ ions. We improve the coherence time of qudit levels by an order of magnitude (more than 9 ms) without any magnetic shielding, revealing the potential advantage of the symmetry of the 171Yb+ ion energy structure for counteracting magnetic field noise. Our results are a step toward realizing qudit-based algorithms using trapped ions.","PeriodicalId":108649,"journal":{"name":"Frontiers in Quantum Science and Technology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134525506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Measurement-device-independent multi-party quantum key agreement","authors":"Bing Liu, Rui-Chen Huang, Yuguang Yang, Guangbao Xu","doi":"10.3389/frqst.2023.1182637","DOIUrl":"https://doi.org/10.3389/frqst.2023.1182637","url":null,"abstract":"Quantum key agreement (QKA) is an important quantum cryptography primitive. In a QKA protocol, two or more untrusted parties can agree on an identical key in such a way that they equally influence the key and no subset can decide it alone. However, in practical QKA, the imperfections of the participant’s detectors can be exploited to compromise the security and fairness of QKA. To remove all the detector-side-channel loopholes, a measurement-device-independent multi-party QKA protocol is proposed. The protocol exploits the post-selected GHZ states to generate a secure agreement key between legitimate participants, while ensuring the fairness of key agreement. Our protocol provides a new clue for the design of practical QKA protocols.","PeriodicalId":108649,"journal":{"name":"Frontiers in Quantum Science and Technology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130690327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deploying hybrid quantum-secured infrastructure for applications: When quantum and post-quantum can work together","authors":"A. Fedorov","doi":"10.3389/frqst.2023.1164428","DOIUrl":"https://doi.org/10.3389/frqst.2023.1164428","url":null,"abstract":"Most currently used cryptographic tools for protecting data are based on certain computational assumptions, which makes them vulnerable with respect to technological and algorithmic developments, such as quantum computing. One existing option to counter this potential threat is quantum key distribution, whose security is based on the laws of quantum physics. Quantum key distribution is secure against unforeseen technological developments. A second approach is post-quantum cryptography, which is a set of cryptographic primitives that are believed to be secure even against attacks with both classical and quantum computing technologies. From this perspective, this study reviews recent progress in the deployment of the quantum-secured infrastructure based on quantum key distribution, post-quantum cryptography, and their combinations. Various directions in the further development of the full-stack quantum-secured infrastructure are also indicated. Distributed applications, such as blockchains and distributed ledgers, are also discussed.","PeriodicalId":108649,"journal":{"name":"Frontiers in Quantum Science and Technology","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126682948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum non-Markovianity: Overview and recent developments","authors":"U. Shrikant, Prabha Mandayam","doi":"10.3389/frqst.2023.1134583","DOIUrl":"https://doi.org/10.3389/frqst.2023.1134583","url":null,"abstract":"In the current era of noisy intermediate-scale quantum (NISQ) devices, research on the theory of open system dynamics has a crucial role to play. In particular, understanding and quantifying memory effects in quantum systems is critical to gain a better handle on the effects of noise in quantum devices. The main focus of this review is to address the fundamental question of defining and characterizing such memory effects—broadly referred to as quantum non-Markovianity—utilizing various approaches. We first discuss the two-time-parameter maps approach to open system dynamics and review the various notions of quantum non-Markovianity that arise in this paradigm. We then discuss an alternate approach to quantum stochastic processes based on the quantum combs framework, which accounts for multi-time correlations. We discuss the interconnections and differences between these two paradigms and conclude with a discussion on the necessary and sufficient conditions for quantum non-Markovianity.","PeriodicalId":108649,"journal":{"name":"Frontiers in Quantum Science and Technology","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127821854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}