{"title":"Shortcuts to adiabaticity in a fast controlled-phase gate in superconducting quantum circuits","authors":"Jia-Xin Li, F. A. Cárdenas-López, X. Chen","doi":"10.3389/frqst.2023.1135816","DOIUrl":"https://doi.org/10.3389/frqst.2023.1135816","url":null,"abstract":"Based on renewed interest in the shortcut-to-adiabaticity techniques in quantum control, we propose a reverse-engineering approach to modulate the longitudinal coupling between a pair of two-level systems with a quantized single-mode resonator. This allows us to suppress the unwanted transitions in the time-evolution operator such that the system dynamics resemble a controlled-phase gate acting in the qubit subspace at the nanosecond scale. The reduced gating time mitigates the detrimental effect produced by the loss mechanisms in all aspects. Moreover, we present a possible experimental implementation based on superconducting quantum circuits. Our work further demonstrates the versatility of the reverse-engineering method to enhance quantum protocols based on circuit quantum electrodynamic architecture.","PeriodicalId":108649,"journal":{"name":"Frontiers in Quantum Science and Technology","volume":"470 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131820959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Federico D. Domínguez, Josua Unger, M. Traube, B. Mant, C. Ertler, W. Lechner
{"title":"Encoding-independent optimization problem formulation for quantum computing","authors":"Federico D. Domínguez, Josua Unger, M. Traube, B. Mant, C. Ertler, W. Lechner","doi":"10.3389/frqst.2023.1229471","DOIUrl":"https://doi.org/10.3389/frqst.2023.1229471","url":null,"abstract":"We review encoding and hardware-independent formulations of optimization problems for quantum computing. Using this generalized approach, an extensive library of optimization problems from the literature and their various derived spin encodings are discussed. Common building blocks that serve as a construction kit for formulating these spin Hamiltonians are provided. This previously introduced approach paves the way toward a fully automatic construction of Hamiltonians for arbitrary discrete optimization problems and this freedom in the problem formulation is a key step for tailoring optimal spin Hamiltonians for different hardware platforms.","PeriodicalId":108649,"journal":{"name":"Frontiers in Quantum Science and Technology","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130243161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NV-centers in SiC: A solution for quantum computing technology?","authors":"K. Khazen, H. J. von Bardeleben","doi":"10.3389/frqst.2023.1115039","DOIUrl":"https://doi.org/10.3389/frqst.2023.1115039","url":null,"abstract":"Spin S = 1 centers in diamond and recently in silicon carbide, have been identified as interesting solid-state qubits for various quantum technologies. The largely-studied case of the nitrogen vacancy center (NV) in diamond is considered as a suitable qubit for most applications, but it is also known to have important drawbacks. More recently it has been shown that divacancies (VSiVC)° and NV (VSiNC)- centers in SiC can overcome many of these drawbacks such as compatibility with microelectronics technology, nanostructuring and n- and p-type doping. In particular, the 4H-SiC polytype is a widely used microelectronic semiconductor for power devices for which these issues are resolved and large-scale substrates (300mmm) are commercially available. The less studied 3C polytype, which can host the same centers (VV, NV), has an additional advantage, as it can be epitaxied on Si, which allows integration with Si technology. The spectral range in which optical manipulation and detection of the spin states are performed, is shifted from the visible, 632 nm for NV centers in diamond, to the near infrared 1200–1300 nm (telecom wavelength) for divacancies and NV centers in SiC. However, there are other crucial parameters for reliable information processing such as the spin-coherence times, deterministic placement on a chip and controlled defect concentrations. In this review, we revisit and compare some of the basic properties of NV centers in diamond and divacancies and NV centers in 4H and 3C-SiC.","PeriodicalId":108649,"journal":{"name":"Frontiers in Quantum Science and Technology","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123446176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phase-dependent strategy to mimic quantum phase transitions","authors":"Yuan Zhou, Lianzhen Cao, Qing-Lan Wang, Changcheng Hu, Zhucheng Zhang, Wei Xiong","doi":"10.3389/frqst.2022.1078597","DOIUrl":"https://doi.org/10.3389/frqst.2022.1078597","url":null,"abstract":"This study proposes a hybrid quantum system of an ensemble of collective spins coupled to a surface acoustic wave (SAW) cavity through a sideband design. Assisted by a dichromatic optical drive with a phase-dependent control, this spin ensemble can effectively mimic different types of long-range Lipkin–Meshkov–Glick (LMG) interactions and then undergo quantum phase transitions (QPTs) due to phase-induced spontaneous symmetry breaking (SSB). In addition, this phase-controlled scheme also ensures the dynamical preparation of the spin-squeezed state (SSS), which may be a useful application in quantum measurement. This study is a fresh attempt at quantum manipulation based on acoustic control and also provides a promising route toward useful applications in quantum information processing, especially the adiabatic preparation of multiparticle-entangled ground states via QPTs; i.e., the Greenberger–Horne–Zeilinger (GHZ) or W-type states.","PeriodicalId":108649,"journal":{"name":"Frontiers in Quantum Science and Technology","volume":"218 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115520079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application perspective of cavity optomechanical system","authors":"Huanying Sun, Yulong Liu, Tiefu Li","doi":"10.3389/frqst.2022.1091691","DOIUrl":"https://doi.org/10.3389/frqst.2022.1091691","url":null,"abstract":"Cavity optomechanical systems are demonstrating diverse applications in sensing and transduction, profiting from advances in related theories and experiments, which also promotes quantum research based on them. Here, we first briefly introduce typical applications of cavity optomechanical systems and some of our recent progress in this field and then discuss the potential of cavity optomechanical systems for exploring fundamental questions in quantum theory and the challenges encountered in current developments. Cavity optomechanical systems will play a vital role in quantum computing and quantum information and will enrich the quantum toolbox, particularly in quantum interfaces and quantum memory.","PeriodicalId":108649,"journal":{"name":"Frontiers in Quantum Science and Technology","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128211777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NP-hard but no longer hard to solve? Using quantum computing to tackle optimization problems","authors":"Rhonda Au-Yeung, N. Chancellor, Pascal Halffmann","doi":"10.3389/frqst.2023.1128576","DOIUrl":"https://doi.org/10.3389/frqst.2023.1128576","url":null,"abstract":"In the last decade, public and industrial research funding has moved quantum computing from the early promises of Shor’s algorithm through experiments to the era of noisy intermediate scale quantum devices (NISQ) for solving real-world problems. It is likely that quantum methods can efficiently solve certain (NP-) hard optimization problems where classical approaches fail. In our perspective, we examine the field of quantum optimization, that is, solving optimization problems using quantum computers. We provide an entry point to quantum optimization for researchers from each topic, optimization or quantum computing, by demonstrating advances and obstacles with a suitable use case. We give an overview on problem formulation, available algorithms, and benchmarking. Although we show a proof-of-concept rather than a full benchmark between classical and quantum methods, this gives an idea of the current quality and capabilities of quantum computers for optimization problems. All observations are incorporated in a discussion on some recent quantum optimization breakthroughs, current status, and future directions.","PeriodicalId":108649,"journal":{"name":"Frontiers in Quantum Science and Technology","volume":"81 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128149283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the classicality of quantum dephasing processes","authors":"Davide Lonigro, D. Chru'sci'nski","doi":"10.3389/frqst.2022.1090022","DOIUrl":"https://doi.org/10.3389/frqst.2022.1090022","url":null,"abstract":"We analyze the multitime statistics associated with pure dephasing systems repeatedly probed with sharp measurements, and search for measurement protocols whose statistics satisfy the Kolmogorov consistency conditions possibly up to a finite order. We find a rich phenomenology of quantum dephasing processes which can be interpreted in classical terms. In particular, if the underlying dephasing process is Markovian, we find sufficient conditions under which classicality at every order can be found: this can be reached by choosing the dephasing and measurement basis to be fully compatible or fully incompatible, that is, mutually unbiased bases (MUBs). For non-Markovian processes, classicality can only be proven in the fully compatible case, thus revealing a key difference between Markovian and non-Markovian pure dephasing processes.","PeriodicalId":108649,"journal":{"name":"Frontiers in Quantum Science and Technology","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126843962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Grand challenge of quantum information theory","authors":"F. Mintert","doi":"10.3389/frqst.2022.1012589","DOIUrl":"https://doi.org/10.3389/frqst.2022.1012589","url":null,"abstract":"","PeriodicalId":108649,"journal":{"name":"Frontiers in Quantum Science and Technology","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115663366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Theoretical development of discrete-modulated continuous-variable quantum key distribution","authors":"Wen-Bo Liu, Chen-Long Li, Zhi-Ping Liu, Min-Gang Zhou, Hua-Lei Yin, Zeng-Bing Chen","doi":"10.3389/frqst.2022.985276","DOIUrl":"https://doi.org/10.3389/frqst.2022.985276","url":null,"abstract":"Continuous-variable quantum key distribution offers simple, stable and easy-to-implement key distribution systems. The discrete modulation scheme further reduces the technical difficulty. The main regret is that the security of discrete modulation schemes has not been sufficiently demonstrated. Schemes with different signal state distributions use various physical conditions to obtain the key rate formula, resulting in different security levels, computation complexities and implementation difficulties. Therefore, a relatively systematic and logically consistent security proof against most general attacks is worth exploring. On the other hand, extending the discrete modulation scheme and its variants to different applications, such as satellite-to-earth communication, can further activate and advance this field. Here, we briefly review the achievements that have been made in discrete-modulated continuous-variable quantum key distribution, and openly discuss some issues worthy of further research.","PeriodicalId":108649,"journal":{"name":"Frontiers in Quantum Science and Technology","volume":"253 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122706590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-assisted deterministic hyperentangled-Bell-state analysis for polarization and double longitudinal momentum degrees of freedom of photon system","authors":"Chang-Qi Yu, Zheng Zhang, Ji Qi, B. Ren","doi":"10.3389/frqst.2022.985130","DOIUrl":"https://doi.org/10.3389/frqst.2022.985130","url":null,"abstract":"Hyperentangled state analysis is an important module in high-capacity quantum communication. We present a self-assisted deterministic hyperentangled-Bell-state analysis (HBSA) scheme for photon system entangled in three degrees of freedom (DOFs), where 64 polarization-double longitudinal momentum hyperentangled Bell states are completely distinguished. In this HBSA scheme, the four first longitudinal momentum Bell states are distinguished determinately by nondestructive first longitudinal momentum Bell state analyzer, which is constructed with cross-Kerr nonlinearity medium. The 16 second longitudinal momentum-polarization hyperentangled Bell states are distinguished determinately by self-assisted second longitudinal momentum-polarization hyperentangled Bell state analyzer using linear optical elements, where the first longitudinal momentum Bell state and time-bin entangled state are used as auxiliary. Using this self-assisted method, the application of nonlinear optical resource in HBSA scheme has been largely reduced, which makes this self-assisted deterministic HBSA scheme has potential application prospects in high-capacity quantum communication.","PeriodicalId":108649,"journal":{"name":"Frontiers in Quantum Science and Technology","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133117133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}