探讨量子光学中学生概念理解与模式思维的关系

M. Ubben, P. Bitzenbauer
{"title":"探讨量子光学中学生概念理解与模式思维的关系","authors":"M. Ubben, P. Bitzenbauer","doi":"10.3389/frqst.2023.1207619","DOIUrl":null,"url":null,"abstract":"Learning quantum physics is essential for understanding the physical world. However, learning about quantum phenomena and principles poses a challenge as many of the phenomena that are observed at the quantum level cannot be directly observed or intuitively understood in terms of classical physics or thinking. Models play an important role in learning quantum physics by providing conceptual frameworks and visual representations that allow reasoning about and predicting the behavior of quantum systems. Therefore, understanding models is an essential part of learning quantum physics. In this article, we report the results of an exploratory survey study (N = 116) investigating the relationship between secondary school students’ conceptual understanding and model thinking in quantum optics with a particular focus on photons. The findings suggest a strong positive correlation between students’ functional understanding of the photon model and their conceptual understanding of quantum optics. This study contributes to our understanding of how students learn and make sense of quantum concepts through the use of models and may inform the development of instructional strategies for quantum physics education and outreach.","PeriodicalId":108649,"journal":{"name":"Frontiers in Quantum Science and Technology","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exploring the relationship between students’ conceptual understanding and model thinking in quantum optics\",\"authors\":\"M. Ubben, P. Bitzenbauer\",\"doi\":\"10.3389/frqst.2023.1207619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning quantum physics is essential for understanding the physical world. However, learning about quantum phenomena and principles poses a challenge as many of the phenomena that are observed at the quantum level cannot be directly observed or intuitively understood in terms of classical physics or thinking. Models play an important role in learning quantum physics by providing conceptual frameworks and visual representations that allow reasoning about and predicting the behavior of quantum systems. Therefore, understanding models is an essential part of learning quantum physics. In this article, we report the results of an exploratory survey study (N = 116) investigating the relationship between secondary school students’ conceptual understanding and model thinking in quantum optics with a particular focus on photons. The findings suggest a strong positive correlation between students’ functional understanding of the photon model and their conceptual understanding of quantum optics. This study contributes to our understanding of how students learn and make sense of quantum concepts through the use of models and may inform the development of instructional strategies for quantum physics education and outreach.\",\"PeriodicalId\":108649,\"journal\":{\"name\":\"Frontiers in Quantum Science and Technology\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Quantum Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frqst.2023.1207619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Quantum Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frqst.2023.1207619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

学习量子物理学对于理解物理世界至关重要。然而,学习量子现象和原理是一个挑战,因为许多在量子水平上观察到的现象不能直接观察到,也不能用经典物理学或思维直观地理解。模型在学习量子物理中发挥着重要作用,它提供了概念框架和视觉表示,允许对量子系统的行为进行推理和预测。因此,理解模型是学习量子物理的重要组成部分。在本文中,我们报告了一项探索性调查研究(N = 116)的结果,该研究调查了中学生在量子光学中概念理解与模式思维之间的关系,特别是光子。研究结果表明,学生对光子模型的功能理解与他们对量子光学的概念理解之间存在很强的正相关。这项研究有助于我们理解学生如何通过使用模型来学习和理解量子概念,并可能为量子物理教育和推广的教学策略的发展提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the relationship between students’ conceptual understanding and model thinking in quantum optics
Learning quantum physics is essential for understanding the physical world. However, learning about quantum phenomena and principles poses a challenge as many of the phenomena that are observed at the quantum level cannot be directly observed or intuitively understood in terms of classical physics or thinking. Models play an important role in learning quantum physics by providing conceptual frameworks and visual representations that allow reasoning about and predicting the behavior of quantum systems. Therefore, understanding models is an essential part of learning quantum physics. In this article, we report the results of an exploratory survey study (N = 116) investigating the relationship between secondary school students’ conceptual understanding and model thinking in quantum optics with a particular focus on photons. The findings suggest a strong positive correlation between students’ functional understanding of the photon model and their conceptual understanding of quantum optics. This study contributes to our understanding of how students learn and make sense of quantum concepts through the use of models and may inform the development of instructional strategies for quantum physics education and outreach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信