First principles data-driven potentials for prediction of iron carbide clusters

Enhu Diao, Yurong He, Xuhong Liu, Qiang Tong, Tao Yang, Xiaotong Liu, J. P. Lewis
{"title":"First principles data-driven potentials for prediction of iron carbide clusters","authors":"Enhu Diao, Yurong He, Xuhong Liu, Qiang Tong, Tao Yang, Xiaotong Liu, J. P. Lewis","doi":"10.3389/frqst.2023.1190522","DOIUrl":null,"url":null,"abstract":"Many have reported the use of quantum chemistry approaches for evaluating the catalytic properties of iron carbide clusters. Unfortunately, structural energy calculations are computationally expensive when using density functional theory. The computational cost is prohibitive for high-throughput simulations with large length and time scales. In this paper, we generate data from 177 k clusters and choose state-of-the-art machine learning models within physical chemistry to train the features of this data. The generated potential gives a very high prediction accuracy on the order of the structure stability and achieves better adaptability/tolerance to poor structures of clusters. In addition, we use the machine learning potential to assist in high-throughput data collection and the prediction of hydrogen adsorption sites on cluster surfaces. We achieve more stable adsorption locations of the hydrogen atom more rapidly compared with traditional quantum chemical calculations.","PeriodicalId":108649,"journal":{"name":"Frontiers in Quantum Science and Technology","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Quantum Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frqst.2023.1190522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many have reported the use of quantum chemistry approaches for evaluating the catalytic properties of iron carbide clusters. Unfortunately, structural energy calculations are computationally expensive when using density functional theory. The computational cost is prohibitive for high-throughput simulations with large length and time scales. In this paper, we generate data from 177 k clusters and choose state-of-the-art machine learning models within physical chemistry to train the features of this data. The generated potential gives a very high prediction accuracy on the order of the structure stability and achieves better adaptability/tolerance to poor structures of clusters. In addition, we use the machine learning potential to assist in high-throughput data collection and the prediction of hydrogen adsorption sites on cluster surfaces. We achieve more stable adsorption locations of the hydrogen atom more rapidly compared with traditional quantum chemical calculations.
预测碳化铁簇的第一性原理数据驱动势
许多报道使用量子化学方法来评价碳化铁团簇的催化性能。不幸的是,当使用密度泛函理论时,结构能量计算的计算成本很高。对于具有大长度和时间尺度的高通量模拟,计算成本过高。在本文中,我们从177k个聚类中生成数据,并在物理化学中选择最先进的机器学习模型来训练这些数据的特征。生成的电位在结构稳定性的数量级上具有很高的预测精度,并且对结构差的簇具有较好的适应性/容忍度。此外,我们利用机器学习的潜力来协助高通量数据收集和预测簇表面上的氢吸附位点。与传统的量子化学计算相比,我们更快地获得了更稳定的氢原子吸附位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信