{"title":"The Dynamicity of the Oxytocin Receptor in the Brain May Trigger Sensory Deficits in Autism Spectrum Disorder.","authors":"Claudia Camerino","doi":"10.3390/cimb47010061","DOIUrl":"10.3390/cimb47010061","url":null,"abstract":"<p><p>Sensory processing abnormalities have been noted since the first clinical description of autism in 1940. However, it was not until the release of the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) in 2013 that sensory challenges were considered as symptoms of autism spectrum disorder (ASD). Multisensory processing is of paramount importance in building a perceptual and cognitive representation of reality. For this reason, deficits in multisensory integration may be a characteristic of ASD. The neurohormone oxytocin (Oxt) is involved in the etiology of ASD, and there are several ongoing clinical trials regarding Oxt administration in ASD patients. Recent studies indicate that Oxt triggers muscle contraction modulating thermogenesis, while abnormal thermoregulation results in sensory deficits, as in ASD. Activation of the Oxt system through exposure to cold stress regulates the expression of oxytocin receptor (Oxtr) in the brain and circulating Oxt, and if this mechanism is pathologically disrupted, it can lead to sensory processing abnormalities since Oxt acts as a master gene that regulates thermogenesis. This review will describe the sensory deficits characteristic of ASD together with the recent theories regarding how the modulation of Oxt/Oxtr in the brain influences sensory processing in ASD.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763978/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lidia Skuza, Piotr Androsiuk, Romain Gastineau, Magdalena Achrem, Łukasz Paukszto, Jan Paweł Jastrzębski
{"title":"The First Complete Chloroplast Genome Sequence of <i>Secale strictum</i> subsp. <i>africanum</i> Stapf (<i>Poaceae</i>), the Putative Ancestor of the Genus <i>Secale</i>.","authors":"Lidia Skuza, Piotr Androsiuk, Romain Gastineau, Magdalena Achrem, Łukasz Paukszto, Jan Paweł Jastrzębski","doi":"10.3390/cimb47010064","DOIUrl":"10.3390/cimb47010064","url":null,"abstract":"<p><p><i>Secale strictum</i> ssp. <i>africanum</i> (synonym <i>Secale africanum</i>), a putative ancestor of the genus <i>Secale</i>, has been classified within <i>Secale strictum</i>, although recent phylogenetic studies suggest that it represents a distinct species. This study reports the first complete chloroplast genome of <i>S. africanum</i>, highlighting its structure, genetic composition, and phylogenetic relationships within <i>Secale</i> and related Triticiceae species. Phylogeny reconstruction based on the maximum-likelihood method reveals notable genetic similarity between <i>S. strictum</i> and <i>S. africanum</i>, supporting their genetic and phylogenetic distinction. Here, we assembled the complete, annotated chloroplast genome sequence of <i>Secale strictum</i> ssp. <i>africanum</i>. The genome is 137,068 base pair (bp) long. It is the first complete chloroplast genome that can be used as a reference genome for further analysis. The genome can be accessed on GenBank with the accession number OQ700974. This work sheds light on the evolutionary history of <i>Secale</i> and contributes to our understanding of chloroplast genomics in cereal ancestors, with potential applications in improving cereal crop resilience, advancing breeding strategies, and informing conservation efforts for genetic diversity.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764287/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ciprian Pușcașu, Corina Andrei, Octavian Tudorel Olaru, Anca Zanfirescu
{"title":"Metabolite-Sensing Receptors: Emerging Targets for Modulating Chronic Pain Pathways.","authors":"Ciprian Pușcașu, Corina Andrei, Octavian Tudorel Olaru, Anca Zanfirescu","doi":"10.3390/cimb47010063","DOIUrl":"10.3390/cimb47010063","url":null,"abstract":"<p><p>Chronic pain is a debilitating condition affecting millions worldwide, often resulting from complex interactions between the nervous and immune systems. Recent advances highlight the critical role of metabolite-sensing G protein-coupled receptors (GPCRs) in various chronic pain types. These receptors link metabolic changes with cellular responses, influencing inflammatory and degenerative processes. Receptors such as free fatty acid receptor 1 (FFAR1/GPR40), free fatty acid receptor 4 (FFAR4/GPR120), free fatty acid receptor 2 (FFAR2/GPR43), and Takeda G protein-coupled receptor 5 (TGR5/GPR131/GPBAR1) are key modulators of nociceptive signaling. GPR40, activated by long-chain fatty acids, exhibits strong anti-inflammatory effects by reducing cytokine expression. Butyrate-activated GPR43 inhibits inflammatory mediators like nitric oxide synthase-2 and cyclooxygenase-2, mitigating inflammation. TGR5, activated by bile acids, regulates inflammation and cellular senescence through pathways like NF-κB and p38. These receptors are promising therapeutic targets in chronic pain, addressing the metabolic and inflammatory factors underlying nociceptive sensitization and tissue degeneration. This review explores the molecular mechanisms of metabolite-sensing receptors in chronic pain, their therapeutic potential, and challenges in clinical application. By uncovering these mechanisms, metabolite-sensing receptors could lead to safer, more effective pain management strategies.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763455/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Establishment of a Rapid and Convenient Fluoroimmunoassay Platform Using Antibodies Against PDL1 and HER2.","authors":"Ji Eun Choi, Hanool Yun, Hee-Jin Jeong","doi":"10.3390/cimb47010062","DOIUrl":"10.3390/cimb47010062","url":null,"abstract":"<p><p>The development of accurate and high-throughput tools for cancer biomarker detection is crucial for the diagnosis, monitoring, and treatment of diseases. In this study, we developed a simple and rapid fluorescence-linked immunosorbent assay (FLISA) using fluorescent dye-conjugated antibody fragments against programmed cell death ligand 1 (PDL1) and human epithelial growth factor receptor 2 (HER2). We optimized key steps in the FLISA process, including antigen immobilization, blocking, and antibody reaction, reading the assay time to 3 h-significantly faster compared to the 23 h duration of usual FLISA. The limit of detection for the rapid FLISA in detecting PDL1 was lower than that of FLISA, and the detection of HER2 was similar between the two methods, indicating that the rapid FLISA provides a fast and accurate approach for detecting PDL1 and HER2. This robust platform can be readily adapted for various fluoroimmunoassays targeting other antigens of interest.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763867/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katarzyna Szymulewska-Konopko, Joanna Reszeć-Giełażyn, Monika Małeczek
{"title":"Ferritin as an Effective Prognostic Factor and Potential Cancer Biomarker.","authors":"Katarzyna Szymulewska-Konopko, Joanna Reszeć-Giełażyn, Monika Małeczek","doi":"10.3390/cimb47010060","DOIUrl":"10.3390/cimb47010060","url":null,"abstract":"<p><p>Ferritin is found in all cells of the body, serving as a reservoir of iron and protecting against damage to the molecules that make up cellular structures. It has emerged as a biomarker not only for iron-related disorders but also for inflammatory diseases and conditions in which inflammation plays a key role, including cancer, neurodegeneration, and infection. Oxidative stress, which can cause cellular damage, is induced by reactive oxygen species generated during the Fenton reaction, activating signaling pathways associated with tumor growth and proliferation. This review primarily emphasizes basic studies on the identification and function of ferritin, its essential role in iron metabolism, its involvement in inflammatory diseases, and its potential as an important prognostic factor and biomarker for cancer detection.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763953/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oncogene OSTM1 Promotes Gastric-Cancer Metastasis by Modulating the Metastatic Microenvironment Through Altered Tumor-Cell Autocrine Signaling.","authors":"Yucheng Tang, Yi Guo, Jiangyi Feng, Ziwei Wang","doi":"10.3390/cimb47010055","DOIUrl":"10.3390/cimb47010055","url":null,"abstract":"<p><p>Gastric cancer remains a malignancy with high incidence, mortality rates, and poor prognosis globally. Osteoclastogenesis-associated transmembrane protein 1 (OSTM1), a transmembrane protein overexpressed in various tumors, has unclear functions in gastric-cancer progression. This study explores OSTM1's role in gastric-cancer proliferation and metastasis. OSTM1 expression was analyzed in gastric-cancer and adjacent tissues using immunohistochemistry and RT-qPCR. OSTM1 overexpression and knockdown cell lines were established to assess its effects on cancer-cell behavior through in vitro and in vivo experiments. Western blot and RT-qPCR were used to examine OSTM1's regulation of S100A4 expression. OSTM1 was significantly overexpressed in gastric-cancer tissues, negatively correlating with TNM staging and overall survival. OSTM1 overexpression enhanced cancer-cell proliferation, colony formation, migration, and invasion, while its knockdown showed opposite effects. In vivo studies confirmed increased lung metastatic capability in high OSTM1-expressing cells. Mechanistically, OSTM1 positively regulated S100A4 expression, with S100A4 knockdown reducing OSTM1-enhanced metastasis. Gastric-cancer lung metastases showed higher microvascular density and α-SMA-positive fibroblast infiltration in the OSTM1 high-expression group. OSTM1 promotes gastric-cancer progression by upregulating S100A4 and modifying the tumor microenvironment through enhanced angiogenesis and fibroblast activation. OSTM1 represents a potential diagnostic and prognostic biomarker, with the OSTM1-S100A4 axis offering new therapeutic possibilities for gastric-cancer treatment.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11840279/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edith Elizondo-Reyna, Humberto Martínez-Montoya, Yahaira Tamayo-Ordoñez, María Antonia Cruz-Hernández, Mauricio Carrillo-Tripp, María Concepción Tamayo-Ordoñez, Gerardo de Jesús Sosa-Santillán, José Antonio Rodríguez-de la Garza, Mario Hernández-Guzmán, Virgilio Bocanegra-García, Erika Acosta-Cruz
{"title":"Insights from a Genome-Wide Study of <i>Pantoea agglomerans</i> UADEC20: A Promising Strain for Phosphate Solubilization and Exopolysaccharides Production.","authors":"Edith Elizondo-Reyna, Humberto Martínez-Montoya, Yahaira Tamayo-Ordoñez, María Antonia Cruz-Hernández, Mauricio Carrillo-Tripp, María Concepción Tamayo-Ordoñez, Gerardo de Jesús Sosa-Santillán, José Antonio Rodríguez-de la Garza, Mario Hernández-Guzmán, Virgilio Bocanegra-García, Erika Acosta-Cruz","doi":"10.3390/cimb47010056","DOIUrl":"10.3390/cimb47010056","url":null,"abstract":"<p><p>The genome sequence of <i>Pantoea agglomerans</i> UADEC20 is presented, which is a strain isolated from agricultural fields in northeast Mexico. The genome was assembled into 13 scaffolds, constituting a total chromosome size of 4.2 Mbp, with two of the scaffolds representing closed plasmids. The strain exhibits activity in phosphate solubilization and exopolysaccharide (EPS) production and secretion; therefore, we explored its biotechnological potential via its genome sequencing and annotation. Genomic analyses showed that a total of 57 and 58 coding sequences (CDSs) related to phosphate solubilization and EPS production were identified within its genome, in addition to a reduced number of CDSs related to drug resistance and phages. The comprehensive set of genes supporting phosphate solubilization, EPS synthesis, and secretion, along with its low virulence and antibiotic resistance levels, justify further research for its potential biotechnological application and possible use as a plant growth-promoting agent in the field. These findings suggest a unique genetic background in the <i>P</i>. <i>agglomerans</i> UADEC20 strain.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763638/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Perch Hydrolysates from Upcycling of Perch Side Streams Accelerate Wound Healing by Enhancing Fibroblasts to Secrete Procollagen I, Fibronectin, and Hyaluronan.","authors":"Jia-Feng Chang, Chih-Yu Hsieh, Ling-Ni Chen, Mao-Hsiang Lee, Yi-Han Ting, Chi-Yu Yang, Chih-Cheng Lin","doi":"10.3390/cimb47010057","DOIUrl":"10.3390/cimb47010057","url":null,"abstract":"<p><p>Wound healing incurs various challenges, making it an important topic in medicine. Short-chain peptides from fish protein hydrolysates possess wound healing properties that may represent a solution. In this study, perch hydrolysates were produced from perch side steams using a designed commercial complex enzyme via a proprietary pressure extraction technique. The average molecular weight of the perch peptides was 1289 kDa, and 62.60% of the peptides had a low molecular weight (≤1 kDa). Similarly to the beneficial amino acid sequence FPSIVGRP, FPSLVRGP accounted for 6.21% abundance may have a potential antihypertensive effect. The concentrations of collagen composition and branched-chain amino acids were 1183 and 1122 mg/100 g, respectively. In a fibroblast model, active perch peptides accelerated wound healing mainly by increasing the secretion of procollagen I, fibronectin, and hyaluronan. In an SD rat model established to mimic human wounds, orally administered perch hydrolysates with a molecular weight below 2.3 kDa accelerated wound healing, which mainly resulted from collagen-forming amino acids, branched-chain amino acids, and matrikine. Collectively, the residue of perch extract can be upcycled via a hydrolysis technique to produce not only bioactive sequences but also short-chain peptides. Considering the therapeutic potential to promote wound healing, such by-products are of great value and may be developed as dietary nutraceuticals.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763970/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ammonium Transporter 1 (<i>AMT1</i>) Gene Family in Pomegranate: Genome-Wide Analysis and Expression Profiles in Response to Salt Stress.","authors":"Fatima Omari Alzahrani","doi":"10.3390/cimb47010059","DOIUrl":"10.3390/cimb47010059","url":null,"abstract":"<p><p>Understanding the ammonium (NH<sub>4</sub><sup>+</sup>) uptake and transport systems, particularly <i>AMT1</i> genes, is important for plant growth and defense. However, there is a lack of research on identifying and analyzing <i>AMT1</i> genes in pomegranate, emphasizing the need for further investigation in this area. Five <i>AMT1</i> genes (<i>PgAMT1-1</i> to <i>PgAMT1-5</i>) were identified, all of which contain the PF00909 domain, a feature of ammonium transporters. Various characteristics of these genes, including gene length, coding sequence length, and chromosomal locations, were examined. This study evaluated the isoelectric point, hydropathicity, conserved domains, motifs, and synteny of the PgAMT1 proteins. Phylogenetic analysis confirmed the homology of <i>PgAMT1</i> genes with previously reported <i>AMT</i> in Arabidopsis and tomato. The tissue-specific expression analysis of <i>PgAMT1</i> genes revealed distinct patterns: <i>PgAMT1-1</i> and <i>PgAMT1-2</i> were predominantly expressed in flowers, <i>PgAMT1-3</i> exhibited notable expression in roots, leaves, and flowers, <i>PgAMT1-4</i> was primarily expressed in leaf tissue, while the expression of <i>PgAMT1-5</i> was detected in both leaves and roots. The impact of salt-induced stress on <i>AMT1</i> gene expression was also examined, revealing that <i>PgAMT1-1</i>, <i>PgAMT1-2</i>, and <i>PgAMT1-4</i> expression is reduced under increased salt stress. These expression modifications can help regulate NH<sub>4</sub>+ assimilation in conditions of elevated salinity, maintaining cellular homeostasis and ion balance. This study contributes to the comprehensive identification of the <i>AMT1</i>s gene family in pomegranate; however, further research on the functional characterization of the identified <i>PgAMT1</i>s is needed.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764171/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genetic Tendency Analysis and Comprehensive Antioxidant Activity Evaluation of Leaves and Flowers of Loquat F<sub>1</sub> Generation.","authors":"Qixuan Zhu, Xiaoying Li, Hang Ge, Zhixuan Wang, Binjun Wang, Junwei Chen, Hongxia Xu","doi":"10.3390/cimb47010058","DOIUrl":"10.3390/cimb47010058","url":null,"abstract":"<p><p>Loquat leaves, flowers, and other organs contain abundant antioxidant substances, which have wide applications in medicine, health, and food industries. This study aims to provide theoretical guidance for loquat hybrid parent and combination selection and a basis for high-quality loquat strain screening and development. For comprehensive antioxidant profiling, we used \"Ninghaibai\" and \"Oobusa\" loquat and their F<sub>1</sub> generation as experimental materials to determine the total phenol, flavonoid, DPPH, ABTS, and FRAP content in the leaves and flowers of 56 strains. Five traits, including total phenols, flavonoids, DPPH, ABTS, and FRAP, were widely separated and normally distributed in the flowers of 56 F<sub>1</sub> loquat strains, exhibiting the genetic basis of these quantitative traits. However, these traits displayed widely separated and slightly skewed distribution in the leaves of the F<sub>1</sub> generation. The total phenols, flavonoids, DPPH, and FRAP showed a trend of small inheritance in the leaves. However, the ABTS showed a trend of medium and high inheritance in leaves and flowers, respectively. Through cluster and principal component analyses, a comprehensive antioxidant activity evaluation was conducted. Ten strains with comprehensive scores greater than 1 for antioxidant activity in leaves and flowers were selected. Among them, the top three strains with high antioxidant capacity were ND107, \"Oobusa\", and ND128. These results suggest that hybrid breeding guided by the genetic characteristics of each trait can improve the possibility of cultivating new varieties with high antioxidant activity.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763667/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}