Current opinion in biotechnology最新文献

筛选
英文 中文
Phosphate-binding proteins and peptides: from molecular mechanisms to potential applications 磷酸盐结合蛋白和肽:从分子机制到潜在应用
IF 7.1 2区 工程技术
Current opinion in biotechnology Pub Date : 2024-09-13 DOI: 10.1016/j.copbio.2024.103199
{"title":"Phosphate-binding proteins and peptides: from molecular mechanisms to potential applications","authors":"","doi":"10.1016/j.copbio.2024.103199","DOIUrl":"10.1016/j.copbio.2024.103199","url":null,"abstract":"<div><p>Selective binding of phosphate is vital to multiple aims including phosphate transport into cells and phosphate-targeted applications such as adsorption-based water treatment and sensing. High-affinity phosphate-binding proteins and peptides offer a nature-inspired means of efficiently binding and separating phosphate from complex matrices. The binding protein PstS is characterized by a Venus flytrap topology that confers exceptional phosphate affinity and selectivity, and is effective even at low phosphate concentrations, all of which are essential for applications such as phosphate sensing, removal, and recovery. The binding event is reversible under controlled conditions, making it germane to catch-and-release objectives that advance phosphorus sustainability. Peptides such as the P loop motif are also promising for such applications. Future advances in protein/peptide design can contribute to increased implementation in engineered systems.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142173245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of inositol in the environmental organic phosphate cycle 肌醇在环境有机磷循环中的作用
IF 7.1 2区 工程技术
Current opinion in biotechnology Pub Date : 2024-09-13 DOI: 10.1016/j.copbio.2024.103196
{"title":"The role of inositol in the environmental organic phosphate cycle","authors":"","doi":"10.1016/j.copbio.2024.103196","DOIUrl":"10.1016/j.copbio.2024.103196","url":null,"abstract":"<div><p>Cellular synthesis of phytic acid sequesters phosphates in the sugar inositol. Phytic acid in soil represents the most abundant form of organic phosphates. The supplementation of phytase or phytase-producing organisms has been considered as a strategy to improve usable soil phosphates. However, the impacts on the environmental flow of inositol, which is generated along with phosphate by phytase, have not been examined. In this review, we discuss the origin and nature of inositol produced in soil and the several possible destinations of inositol released by phytase activities. We emphasise how an improved understanding of soil inositol flow could help to provide new solutions to the phosphate shortage problem in agriculture.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0958166924001320/pdfft?md5=0073b995f31135f2896a1c94fb6ca0c3&pid=1-s2.0-S0958166924001320-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142173244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AuxSynBio: synthetic biology tools to understand and engineer auxin AuxSynBio:了解和设计辅助素的合成生物学工具
IF 7.1 2区 工程技术
Current opinion in biotechnology Pub Date : 2024-09-09 DOI: 10.1016/j.copbio.2024.103194
{"title":"AuxSynBio: synthetic biology tools to understand and engineer auxin","authors":"","doi":"10.1016/j.copbio.2024.103194","DOIUrl":"10.1016/j.copbio.2024.103194","url":null,"abstract":"<div><p>The plant hormone auxin is a crucial coordinator of nearly all plant growth and development processes. Because of its centrality to plant physiology and the modular nature of the signaling pathway, auxin has played a critical role at the forefront of plant synthetic biology. This review will highlight how auxin is both a subject and an object of synthetic biology. Engineering biology approaches are deepening our understanding of how auxin pathways are wired and tuned, particularly through the creative use of signaling pathway recapitulation in yeast and engineered orthogonal auxin-receptor pairs. Auxin biology has also been mined for parts by synthetic biologists, with components being used for inducible protein degradation systems (auxin-inducible degron), auxin biosensors, synthetic cell–cell communication, and plant engineering.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0958166924001307/pdfft?md5=6774458c5a1f23b51d0cb75c92deb9b5&pid=1-s2.0-S0958166924001307-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioengineering and management for efficient and sustainable utilization of phosphorus in crops 作物中磷的高效和可持续利用的生物工程和管理。
IF 7.1 2区 工程技术
Current opinion in biotechnology Pub Date : 2024-09-05 DOI: 10.1016/j.copbio.2024.103180
{"title":"Bioengineering and management for efficient and sustainable utilization of phosphorus in crops","authors":"","doi":"10.1016/j.copbio.2024.103180","DOIUrl":"10.1016/j.copbio.2024.103180","url":null,"abstract":"<div><p>Phosphorus (P) is an essential macronutrient for plant growth, but low P availability in soils is also a primary constraint to crop production. To meet the increasing demands for food, P fertilizer applications have been increased, causing the accumulation of surplus P in soils, which has led to the frequency and magnitude of associated risk effects on agroecosystems. Finding solutions for efficient and sustainable crop P utilization is, therefore, an urgent priority. This review summarizes recent progress in bioengineering approaches to improving crop P efficiency and highlights that modifying root architecture in P-deficient soils and reducing P accumulation in grains in soils with P surplus could offer a way forward for improving P use efficiency.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rethinking characterization, application, and importance of extracellular polymeric substances in water technologies 重新思考细胞外聚合物物质在水技术中的特性、应用和重要性
IF 7.1 2区 工程技术
Current opinion in biotechnology Pub Date : 2024-08-30 DOI: 10.1016/j.copbio.2024.103192
{"title":"Rethinking characterization, application, and importance of extracellular polymeric substances in water technologies","authors":"","doi":"10.1016/j.copbio.2024.103192","DOIUrl":"10.1016/j.copbio.2024.103192","url":null,"abstract":"<div><p>Biofilms play important roles in water technologies such as membrane treatments and activated sludge. The extracellular polymeric substances (EPS) are key components of biofilms. However, the precise nature of these substances and how they influence biofilm formation and behavior remain critical knowledge gaps. EPS are produced by many different microorganisms and span multiple biopolymer classes, which each require distinct strategies for characterization. The biopolymers additionally associate with each other to form insoluble complexes. Here, we explore recent progress toward resolving the structures and functions of EPS, where a shift towards direct functional assessments and advanced characterization techniques is necessary. This will enable integration with better microbial community and omics analyses to understand EPS biosynthesis pathways and create further opportunities for EPS control and valorization.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0958166924001289/pdfft?md5=70470cddc0d6011a8ee8b4470df671b4&pid=1-s2.0-S0958166924001289-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating bioprinting and optogenetic technologies for precision plant tissue engineering 整合生物打印和光遗传技术,实现精准植物组织工程学
IF 7.1 2区 工程技术
Current opinion in biotechnology Pub Date : 2024-08-28 DOI: 10.1016/j.copbio.2024.103193
{"title":"Integrating bioprinting and optogenetic technologies for precision plant tissue engineering","authors":"","doi":"10.1016/j.copbio.2024.103193","DOIUrl":"10.1016/j.copbio.2024.103193","url":null,"abstract":"<div><p>Recent advancements in plant bioprinting and optogenetic tools have unlocked new avenues to revolutionize plant tissue engineering. Bioprinting of plant cells has the potential to craft intricate 3D structures incorporating multiple cell types, replicating the complex microenvironments found in plants. Concurrently, optogenetic tools enable the control of biological events with spatial, temporal, and quantitative precision. Originally developed for human and microbial systems, these two cutting-edge methodologies are now being adapted for plant research. Although still in the early stages of development, we here review the latest progress in plant bioprinting and optogenetics and discuss compelling opportunities for plant biotechnology and research arising from the combination of the two technologies.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0958166924001290/pdfft?md5=80ffb0798dc86922ce93afc486a1861b&pid=1-s2.0-S0958166924001290-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifaceted metabolic role of infections in the tumor microenvironment 感染在肿瘤微环境中的多方面代谢作用
IF 7.1 2区 工程技术
Current opinion in biotechnology Pub Date : 2024-08-27 DOI: 10.1016/j.copbio.2024.103183
{"title":"Multifaceted metabolic role of infections in the tumor microenvironment","authors":"","doi":"10.1016/j.copbio.2024.103183","DOIUrl":"10.1016/j.copbio.2024.103183","url":null,"abstract":"<div><p>The impact of bacteria and viruses on tumor growth has long been recognized. In recent decades, interest in the role of microorganisms in the tumor microenvironment (TME) has expanded. Infections induce metabolic reprogramming and influence immune responses within the TME that may either support proliferation and metastasis or limit tumor growth. The natural ability to infect cells and alter the TME is also utilized for cancer detection and treatment. In this review, we discuss recent discoveries about the mechanisms of bacteria and viruses affecting TME, as well as strategies in cancer therapy focusing on metabolic alterations. Infections with engineered bacteria and viruses represent promising therapeutic approaches to develop novel and more effective therapies to constrain tumor growth.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0958166924001198/pdfft?md5=6b70d99e022c97e0c8e3b5bf3368113f&pid=1-s2.0-S0958166924001198-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Delivery approaches of immunomodulatory nucleic acids for cancer therapy 用于癌症治疗的免疫调节核酸递送方法
IF 7.1 2区 工程技术
Current opinion in biotechnology Pub Date : 2024-08-22 DOI: 10.1016/j.copbio.2024.103182
{"title":"Delivery approaches of immunomodulatory nucleic acids for cancer therapy","authors":"","doi":"10.1016/j.copbio.2024.103182","DOIUrl":"10.1016/j.copbio.2024.103182","url":null,"abstract":"<div><p>Messenger RNA (mRNA) vaccines have made remarkable public health contributions during the pandemic and initiated a new era for nucleic acid–based therapeutics. With the unique strength of nucleic acids, including not only mRNA but also DNA, microRNA, small interfering RNA (siRNA), and other nucleic acids, either in tuning off genes or introducing function, nucleic acid therapeutics have been regarded as potential candidates for the treatment of many different diseases, especially for the immunomodulation in cancer. However, the scope of the applications was limited by the challenges in delivery due to intrinsic properties of nucleic acids including low stability, immunogenicity, and toxicity. Bioengineering approaches toward efficient and targeted delivery of therapeutic nucleic acids have gained momentum in clinical applications in the past few decades. Recent advances in the biotechnological approaches for the delivery of mRNA, siRNA, and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas for immunomodulatory are promising alternatives in designing future cancer immunotherapy.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0958166924001186/pdfft?md5=6ed4e7bca846753b059e3390185cb9aa&pid=1-s2.0-S0958166924001186-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Jump-starting chimeric antigen receptor-T cells to go the extra mile with nanotechnology 利用纳米技术启动嵌合抗原受体-T 细胞,实现额外的突破
IF 7.1 2区 工程技术
Current opinion in biotechnology Pub Date : 2024-08-20 DOI: 10.1016/j.copbio.2024.103179
{"title":"Jump-starting chimeric antigen receptor-T cells to go the extra mile with nanotechnology","authors":"","doi":"10.1016/j.copbio.2024.103179","DOIUrl":"10.1016/j.copbio.2024.103179","url":null,"abstract":"<div><p>Despite success in treating hematologic malignancies, chimeric antigen receptor-T cell (CAR-T) therapy still faces multiple challenges that have halted progress, especially against solid tumors. Recent advances in nanoscale engineeirng provide several avenues for overcoming these challenges, including more efficienct programming of CAR-Ts <em>ex vivo</em>, promoting immune responsiveness in the tumor microenvironment (TME) <em>in vivo</em>, and boosting CAR-T function <em>in situ</em>. Here, we summarize recent innovations that leverage nanotechnology to directly address the major obstacles that impede CAR-T therapy from reaching its full potential across various cancer types. We conclude with a commentary on the state of the field and how nanotechnology can shape the future of CAR-T and adoptive cell therapy in immuno-oncology.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0958166924001150/pdfft?md5=c73b9469a2059f2e314a0128c61443fe&pid=1-s2.0-S0958166924001150-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142012207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reducing phosphorus losses from agricultural land to surface water 减少从农田到地表水的磷流失
IF 7.1 2区 工程技术
Current opinion in biotechnology Pub Date : 2024-08-15 DOI: 10.1016/j.copbio.2024.103181
{"title":"Reducing phosphorus losses from agricultural land to surface water","authors":"","doi":"10.1016/j.copbio.2024.103181","DOIUrl":"10.1016/j.copbio.2024.103181","url":null,"abstract":"<div><p>Phosphorus (P) enrichment of water impairs its quality by stimulating algal growth and eutrophication, affecting an estimated 1.7 billion people. Remediation costs are substantial, estimated at $1 billion annually in Europe and $2.4 billion in the USA. Agricultural intensification over the past 50 years has increased P use brought into the system from mined fertiliser sources. This has enriched soil P concentrations and loss to surface waters via pathways such as surface runoff and subsurface flow, which are influenced by precipitation, slope, and farming practices. Effective mitigation of losses involves managing P sources, mobilisation, and transport/delivery mechanisms. The cost-effectiveness of mitigation actions can be improved if they are targeted to critical source areas (CSAs), which are small zones that disproportionately contribute to P loss. While targeting CSAs works well in areas with variable topography, flatter landscapes require managing legacy sources, such as enriched soil P to prevent P losses.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0958166924001174/pdfft?md5=aa0d8f95b7dd6423868a4643ffb7db69&pid=1-s2.0-S0958166924001174-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141991270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信