Lars Puiman , Carolin Bokelmann , Sean D Simpson , Alfred M Spormann , Ralf Takors
{"title":"Dos and don’ts for scaling up gas fermentations","authors":"Lars Puiman , Carolin Bokelmann , Sean D Simpson , Alfred M Spormann , Ralf Takors","doi":"10.1016/j.copbio.2025.103294","DOIUrl":null,"url":null,"abstract":"<div><div>Gas fermentation processes (using CO<sub>2</sub>, CO, H<sub>2</sub>, CH<sub>4</sub>) have gained significant research and commercial interest in the last years due to their potential for carbon capture and sequestration. The small economic margins of these processes necessitate the use of large-volume bioreactors. For cost-effective gas delivery, we advise using pneumatically agitated bioreactors, like bubble column reactors, compared to traditional stirred-tank reactors. Although scale-up is conventionally done on an empirical and rule-of-thumb basis, rational methods are currently available. The most important one is the knowledge-driven scaling-up approach, wherein (CFD-based) hydrodynamic and kinetic models of large-scale bioreactors guide the design of representative lab-scale experiments. We suggest several future research directions to enhance the predictive capacity of these models and thereby accelerate scaling-up gas fermentation processes.</div></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"93 ","pages":"Article 103294"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166925000382","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Gas fermentation processes (using CO2, CO, H2, CH4) have gained significant research and commercial interest in the last years due to their potential for carbon capture and sequestration. The small economic margins of these processes necessitate the use of large-volume bioreactors. For cost-effective gas delivery, we advise using pneumatically agitated bioreactors, like bubble column reactors, compared to traditional stirred-tank reactors. Although scale-up is conventionally done on an empirical and rule-of-thumb basis, rational methods are currently available. The most important one is the knowledge-driven scaling-up approach, wherein (CFD-based) hydrodynamic and kinetic models of large-scale bioreactors guide the design of representative lab-scale experiments. We suggest several future research directions to enhance the predictive capacity of these models and thereby accelerate scaling-up gas fermentation processes.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.