{"title":"MT1JP: A Pivotal Tumor-Suppressing LncRNA and its Role in Cancer Progression and Therapeutic Potential.","authors":"Haodong He, Jingjie Yang, Wenjin Peng, Moyu Li, Meiyan Shuai, Faming Tan, Zheng Cao, Chengfu Yuan","doi":"10.2174/0113894501365982250119150404","DOIUrl":"https://doi.org/10.2174/0113894501365982250119150404","url":null,"abstract":"<p><p>Metallothionein 1J pseudogene (MT1JP) is a long non-coding RNA (lncRNA) that functions as a tumor suppressor in various malignancies. Reduced MT1JP expression is associated with increased tumor proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and treatment resistance in nine cancers, such as gastric cancer, intrahepatic cholangiocarcinoma, hepatocellular carcinoma, and breast cancer. Mechanistically, MT1JP acts as a competitive endogenous RNA (ceRNA) to regulate oncogenic microRNAs (miRNAs), including miR-92a-3p, miR-214-3p, and miR-24-3p. This regulation restores tumor suppressor genes, such as FBXW7, RUNX3, and PTEN, thereby disrupting oncogenic pathways, including PI3K/AKT, Wnt/βcatenin, and p53, promoting apoptosis, and inhibiting tumor progression. Clinically, MT1JP expression correlates with tumor grade, differentiation, TNM stage, lymph node metastasis, and patient prognosis, suggesting its potential as a diagnostic and prognostic biomarker. Furthermore, its therapeutic potential in RNA-based treatments has attracted significant attention. Despite these findings, questions remain regarding its role in epigenetic regulation, transcriptional control, and RNA delivery. This review explores the molecular mechanisms underlying MT1JP, highlighting its clinical relevance and potential as a therapeutic target. Future research should focus on elucidating its role in epigenetic regulation, overcoming challenges in therapeutic delivery, and validating its utility as a biomarker for different cancers. MT1JP holds promise for advancing precision oncology by providing innovative approaches for cancer diagnosis and treatment.</p>","PeriodicalId":10805,"journal":{"name":"Current drug targets","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current drug targetsPub Date : 2025-01-20DOI: 10.2174/0113894501359801250102055530
Yu Liu, Yalong Dang
{"title":"New Advances in Drug Research for Myopia Control in Adolescents.","authors":"Yu Liu, Yalong Dang","doi":"10.2174/0113894501359801250102055530","DOIUrl":"https://doi.org/10.2174/0113894501359801250102055530","url":null,"abstract":"<p><strong>Background: </strong>Myopia is one of the most common eye diseases worldwide, with an increasing incidence observed in recent years. Globally, effective treatments for myopia have been extensively explored. In recent years, research on drugs for the treatment of myopia has become a popular topic in ophthalmology, with some breakthroughs having been achieved. Compared with surgical treatment, drug treatment is easier for people to accept. Although the efficacy of some drugs in delaying the development of myopia has been confirmed, the mechanism and site of action of some drugs are still not completely clear.</p><p><strong>Objective: </strong>In this study, we review the recent related research on drug therapy for myopia at home and abroad, describe the mechanism of various drugs in treating myopia, evaluate their clinical application value, and identify existing problems.</p><p><strong>Results: </strong>These drugs include atropine, a series of anticholinergic drugs, dopamine agonists, 7- methylxanthine, and intraocular pressure-lowering drugs.</p><p><strong>Conclusion: </strong>Results highlight the efficacy of atropine in myopia treatment with minimal side effects. Anticholinergic medications, such as atropine, have demonstrated efficacy in managing the progression of myopia with a reduced incidence of adverse effects. The emphasis is placed on achieving better long-term effectiveness and minimizing the rebound effect after treatment is stopped. Furthermore, participating in outdoor activities and reducing eye strain are proven strategies for preventing myopia.</p>","PeriodicalId":10805,"journal":{"name":"Current drug targets","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Diabetic Wound Healing: Factors, Mechanisms, and Treatment Strategies Using Herbal Components.","authors":"Sejal Porwal, Rishabha Malviya, Sonali Sundram, Sathvik Belagodu Sridhar, Javedh Shareef","doi":"10.2174/0113894501354898241220075327","DOIUrl":"https://doi.org/10.2174/0113894501354898241220075327","url":null,"abstract":"<p><p>Managing diabetic wounds is a significant challenge for healthcare professionals since severe complications and delayed recovery greatly impact the patients' quality of life. This article aimed to explore various factors affecting diabetic wound healing, the mechanism of wound healing, and potential natural products having wound healing capability. It focuses on mechanisms of action and the therapeutic effectiveness of the compounds employed in the management of diabetic wounds. The review discusses the function of nutrition in wound healing, emphasizing the significance of consuming adequate amounts of protein, energy, lipids, amino acids, vitamins, minerals, and water to promote healing. Several herbs, including Rosmarinus officinalis, Carica papaya, Aloe vera, Annona squamosa, and Punica granatum, are being tested for wound healing qualities in diabetes circumstances. These plants have a variety of modes of action, including antioxidant, anti-inflammatory, antibacterial, and immunomodulatory activities that help to speed up wound healing, stimulate collagen formation, and promote tissue regeneration. The variety of action mechanisms seen in natural products, especially in plants, offers hope for the treatment of diabetic wounds. It may also be possible to improve healing results and the quality of life of diabetes individuals with chronic wounds by including these herbal treatments in wound care programs.</p>","PeriodicalId":10805,"journal":{"name":"Current drug targets","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unraveling Neurological Drug Delivery: Polymeric Nanocarriers for Enhanced Blood-Brain Barrier Penetration.","authors":"Aparna Inamdar, Bannimath Gurupadayya, Praveen Halagali, Vamshi Krishna Tippavajhala, Farhan Khan, Rashmi Pathak, Himanshu Sharma","doi":"10.2174/0113894501339455241101065040","DOIUrl":"10.2174/0113894501339455241101065040","url":null,"abstract":"<p><p>Treating neurological illnesses is challenging because the blood-brain barrier hinders therapeutic medications from reaching the brain. Recent advances in polymeric nanocarriers (PNCs), which improve medication permeability across the blood-brain barrier, may influence therapy strategies for neurological diseases. PNCs have several ways to deliver medications to the nervous system. This review article provides a summary of the parts and manufacturing methods involved in making PNCs. Additionally, it highlights the elements that result in PNCs having enhanced blood-brain barrier penetration. A combination of passive and active targeting strategies is used by PNCs intended to overcome the blood-brain barrier. Among these are micellar structures, nanogels, nanoparticles, cubosomes, and dendrimers. These nanocarriers, which are functionalized with certain ligands that target BBB transporters, enable the direct delivery of drugs to the brain. Mainly, the BBB prevents medications from entering the brain. Understanding the BBB's physiological and anatomical characteristics is necessary to get over this obstacle. Preclinical and clinical research demonstrates the safety and effectiveness of these PNCs, and their potential use in the treatment of neurological illnesses, including brain tumors, Parkinson's disease, and Alzheimer's disease, is discussed. Concerns that PNCs may have about their biocompatibility and possible toxicity are also covered in this review article. This study examines the revolutionary potential of PNCs in CNS drug delivery, potential roadblocks, ongoing research, and future opportunities for PNC design progress. PNCs open the door to more focused and efficient treatment for neurological illnesses by comprehending the subtleties of BBB penetration.</p>","PeriodicalId":10805,"journal":{"name":"Current drug targets","volume":" ","pages":"243-266"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current drug targetsPub Date : 2025-01-01DOI: 10.2174/0113894501304747240823111337
Rakesh D Amrutkar, Mehul V Amesar, Lokesh B Chavan, Nilesh S Baviskar, Vaibhav G Bhamare
{"title":"Precision Targeting of BET Proteins - Navigating Disease Pathways, Inhibitor Insights, and Shaping Therapeutic Frontiers: A Comprehensive Review.","authors":"Rakesh D Amrutkar, Mehul V Amesar, Lokesh B Chavan, Nilesh S Baviskar, Vaibhav G Bhamare","doi":"10.2174/0113894501304747240823111337","DOIUrl":"10.2174/0113894501304747240823111337","url":null,"abstract":"<p><p>The family of proteins known as Bromodomain and Extra-Terminal (BET) proteins has become a key participant in the control of gene expression, having a significant impact on numerous physiological and pathological mechanisms. This review offers a thorough investigation of the BET protein family, clarifying its various roles in essential cellular processes and its connection to a variety of illnesses, from inflammatory disorders to cancer. The article explores the structural and functional features of BET proteins, emphasizing their special bromodomain modules that control chromatin dynamics by identifying acetylated histones. BET proteins' complex roles in the development of cardiovascular, neurodegenerative, and cancer diseases are carefully investigated, providing insight into possible treatment avenues. In addition, the review carefully examines the history and relevance of BET inhibitors, demonstrating their capacity to modify gene expression profiles and specifically target BET proteins. The encouraging outcomes of preclinical and clinical research highlight BET inhibitors' therapeutic potential across a range of disease contexts. The article summarizes the state of BET inhibitors today and makes predictions about the challenges and future directions of the field. This article provides insights into the changing field of BET protein-targeted interventions by discussing the potential of personalized medicine and combination therapies involving BET inhibitors. This thorough analysis combines many aspects of BET proteins, such as their physiological roles and their roles in pathophysiological conditions. As such, it is an invaluable tool for scientists and medical professionals who are trying to figure out how to treat patients by using this fascinating protein family.</p>","PeriodicalId":10805,"journal":{"name":"Current drug targets","volume":" ","pages":"147-166"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current drug targetsPub Date : 2025-01-01DOI: 10.2174/0113894501312571240920070441
Chandrashekhar Sahu, Ram Kumar Sahu, Amit Roy
{"title":"A Review on Nanotechnologically Derived Phytomedicines for the Treatment of Hepatocellular Carcinoma: Recent Advances in Molecular Mechanism and Drug Targeting.","authors":"Chandrashekhar Sahu, Ram Kumar Sahu, Amit Roy","doi":"10.2174/0113894501312571240920070441","DOIUrl":"10.2174/0113894501312571240920070441","url":null,"abstract":"<p><p>The second largest cause of cancer-related death worldwide, Hepatocellular Carcinoma (HCC) is also the most common primary liver cancer. HCC typically arises in patients with liver cirrhosis. Existing synthetic medicines for treating chronic liver disease are ineffective and come with undesirable side effects. Although herbal remedies have widespread popularity, there is still a long road ahead before they are fully accepted by the scientific community. Secondary metabolites and phytochemicals found in plants are abundant in both the human diet and the non-human environment. Natural plant chemicals have been shown to be beneficial as therapeutic and chemopreventive treatments for a wide variety of chronic disorders. Many diseases, including HCC, can be effectively treated with the help of phytochemicals found in food. Resveratrol, curcumin, urolithin A, silibinin, quercetin, N-trans-feruloyl octopamine, emodin, lycopene, caffeine, and phloretin are all examples. Approximately, 60% of all anticancer medications are determined to be derived from natural substances, according to recent studies. Plant derivatives have played an important role in cancer due to their capacity to scavenge free radicals, limit cell proliferation, and set off apoptosis. The progression of HCC is linked to inflammatory signaling pathways, and this study sought to look at how novel approaches, such as phytomedicines, are being used to fight cancer. Recent advancements in molecular mechanisms and drug targeting for HCC have been discussed in this review.</p>","PeriodicalId":10805,"journal":{"name":"Current drug targets","volume":" ","pages":"167-187"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current drug targetsPub Date : 2025-01-01DOI: 10.2174/0113894501335877240926101134
Sadat Shafi, Mohammad Ahmed Khan, Javed Ahmad, Syed Arman Rabbani, Shailja Singh, Abul Kalam Najmi
{"title":"Envisioning Glucose Transporters (GLUTs and SGLTs) as Novel Intervention against Cancer: Drug Discovery Perspective and Targeting Approach.","authors":"Sadat Shafi, Mohammad Ahmed Khan, Javed Ahmad, Syed Arman Rabbani, Shailja Singh, Abul Kalam Najmi","doi":"10.2174/0113894501335877240926101134","DOIUrl":"10.2174/0113894501335877240926101134","url":null,"abstract":"<p><p>Metabolic reprogramming and altered cellular energetics have been recently established as an important cancer hallmark. The modulation of glucose metabolism is one of the important characteristic features of metabolic reprogramming in cancer. It contributes to oncogenic progression by supporting the increased biosynthetic and bio-energetic demands of tumor cells. This oncogenic transformation consequently results in elevated expression of glucose transporters in these cells. Moreover, various cancers exhibit abnormal transporter expression patterns compared to normal tissues. Recent investigations have underlined the significance of glucose transporters in regulating cancer cell survival, proliferation, and metastasis. Abnormal regulation of these transporters, which exhibit varying affinities for hexoses, could enable cancer cells to efficiently manage their energy supply, offering a crucial edge for proliferation. Exploiting the upregulated expression of glucose transporters, GLUTs, and Sodium Linked Glucose Transporters (SGLTs), could serve as a novel therapeutic intervention for anti-cancer drug discovery as well as provide a unique targeting approach for drug delivery to specific tumor tissues. This review aims to discussthe previous and emerging research on the expression of various types of glucose transporters in tumor tissues, the role of glucose transport inhibitors as a cancer therapy intervention as well as emerging GLUT/SGLT-mediated drug delivery strategies that can be therapeutically employed to target various cancers.</p>","PeriodicalId":10805,"journal":{"name":"Current drug targets","volume":" ","pages":"109-131"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"LncRNA HAGLROS: A Vital Oncogenic Propellant in Various Human Cancers.","authors":"Jingjie Yang, Haodong He, Lihan Chen, Yuzhang Wei, Yulong Liu, Xiaolan Li, Chengfu Yuan","doi":"10.2174/0113894501345632241022055444","DOIUrl":"10.2174/0113894501345632241022055444","url":null,"abstract":"<p><p>HAGLR Opposite Strand lncRNA (HAGLROS) is a long non-coding RNA (lncRNA) located on the long arm of human chromosome 2 at locus 2q31.1. Emerging evidence highlights HAGLROS as a pivotal player in human cancers, characterized by its significant upregulation across multiple malignancies where it functions as an oncogenic driver. Its aberrant expression is closely linked to the initiation and progression of 13 distinct cancer types, notably correlating with adverse clinical outcomes and reduced overall survival rates in 9 of these cancer types. Mechanistically, HAGLROS is under the regulatory influence of the transcription factor STAT3, exerts competitive binding to 9 miRNAs, activates 5 signaling pathways pivotal for cancer cell proliferation and metastasis, as well as intricately modulates gene expression profiles. Given its multifaceted roles, HAGLROS emerges as a promising candidate for cancer diagnostics and prognostics. Moreover, its potential as a therapeutic target holds considerable promise for novel treatment strategies in oncology. This review synthesizes current research on HAGLROS, covering its expression patterns, biological roles, and clinical significance in cancer. By shedding light on these aspects, this review aims to contribute new perspectives that advance our understanding of cancer biology, enhance diagnostic accuracy, refine prognostic assessments, and pave the way for targeted therapeutic interventions.</p>","PeriodicalId":10805,"journal":{"name":"Current drug targets","volume":" ","pages":"267-281"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current drug targetsPub Date : 2025-01-01DOI: 10.2174/0113894501328461240921062056
Yulu Chen, Qi Gao, Dan Wang, Xun Zou, Xiuming Li, Jing Ji, Bin Liu
{"title":"An Overview of Research Advances in Oncology Regarding the Transcription Factor ATF4.","authors":"Yulu Chen, Qi Gao, Dan Wang, Xun Zou, Xiuming Li, Jing Ji, Bin Liu","doi":"10.2174/0113894501328461240921062056","DOIUrl":"10.2174/0113894501328461240921062056","url":null,"abstract":"<p><p>This review provides a comprehensive overview of the recent advancements in research on ATF4 (Activating Transcription Factor 4) within the field of oncology. As a crucial transcription factor, ATF4 has garnered increasing attention for its role in cancer research. The review begins with an exploration of the regulatory mechanisms of ATF4, including its transcriptional control, post-translational modifications, and interactions with other transcription factors. It then highlights key research findings on ATF4's involvement in various aspects of tumor biology, such as cell proliferation, differentiation, apoptosis and survival, invasion and metastasis, and the tumor microenvironment. Furthermore, the review discusses the potential of targeting ATF4 as a novel therapeutic strategy for cancer treatment. It also explores how ATF4's interactions with existing anticancer drugs could inform the development of more effective therapeutic agents. By elucidating the role of ATF4 in tumor biology and its potential clinical applications, this review aims to provide new insights and strategies for cancer treatment.</p>","PeriodicalId":10805,"journal":{"name":"Current drug targets","volume":" ","pages":"59-72"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current drug targetsPub Date : 2025-01-01DOI: 10.2174/0113894501337502241015121015
Sushil Kumar Singh, Shyam Sunder Pancholi
{"title":"Current Updates on Pathogenesis, Systemic Therapy, and Treatment of Invasive Fungal Infections.","authors":"Sushil Kumar Singh, Shyam Sunder Pancholi","doi":"10.2174/0113894501337502241015121015","DOIUrl":"10.2174/0113894501337502241015121015","url":null,"abstract":"<p><p>Numerous health hazards are associated with fungal infections, ranging from asymptomatic cases to potentially fatal invasive diseases that are especially dangerous for those with impaired immune systems. The main causes behind these diseases are opportunistic fungi, namely <i>Aspergillus, Candida</i>, and <i>Cryptococcus</i>. Invasive fungal infections (IFIs) require a global response that includes the development of vaccines, standardized protocols for diagnosis, potent antifungal medications, and strategies to stop drug-resistant strains. Improving high-risk group diagnosis and treatment is essential to lowering death rates. This review highlights the substantial health concerns associated with fungal infections, especially in immunocompromised individuals, and identifies <i>Aspergillus, Candida</i>, and <i>Cryptococcus</i> as the main pathogens. It highlights the necessity of international efforts, such as the development of novel diagnostic instruments, imaging methods, and antifungal drugs, to combat these invasive infections. The review also addresses the increasing need for novel treatment approaches in light of the developing resistance to widely used antifungal medications. Furthermore, the significance of secretory proteins in fungal pathogenicity and the potential of combination therapy are investigated. It is also suggested that a multimodal strategy be used to fight these illnesses, given the promise of multivalent vaccinations. Overall, this study emphasizes how critical it is to develop better diagnostic and treatment strategies in order to successfully control and lessen the impact of invasive fungal diseases on the health of the world.</p>","PeriodicalId":10805,"journal":{"name":"Current drug targets","volume":" ","pages":"203-220"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}