Critical Reviews in Biochemistry and Molecular Biology最新文献

筛选
英文 中文
Overview of physiological, biochemical, and regulatory aspects of nitrogen fixation in Azotobacter vinelandii. 黄氏固氮固氮的生理、生化和调控方面综述。
IF 6.5 2区 生物学
Critical Reviews in Biochemistry and Molecular Biology Pub Date : 2022-10-01 DOI: 10.1080/10409238.2023.2181309
Julia S Martin Del Campo, Jack Rigsbee, Marcelo Bueno Batista, Florence Mus, Luis M Rubio, Oliver Einsle, John W Peters, Ray Dixon, Dennis R Dean, Patricia C Dos Santos
{"title":"Overview of physiological, biochemical, and regulatory aspects of nitrogen fixation in <i>Azotobacter vinelandii</i>.","authors":"Julia S Martin Del Campo,&nbsp;Jack Rigsbee,&nbsp;Marcelo Bueno Batista,&nbsp;Florence Mus,&nbsp;Luis M Rubio,&nbsp;Oliver Einsle,&nbsp;John W Peters,&nbsp;Ray Dixon,&nbsp;Dennis R Dean,&nbsp;Patricia C Dos Santos","doi":"10.1080/10409238.2023.2181309","DOIUrl":"https://doi.org/10.1080/10409238.2023.2181309","url":null,"abstract":"<p><p>Understanding how Nature accomplishes the reduction of inert nitrogen gas to form metabolically tractable ammonia at ambient temperature and pressure has challenged scientists for more than a century. Such an understanding is a key aspect toward accomplishing the transfer of the genetic determinants of biological nitrogen fixation to crop plants as well as for the development of improved synthetic catalysts based on the biological mechanism. Over the past 30 years, the free-living nitrogen-fixing bacterium <i>Azotobacter vinelandii</i> emerged as a preferred model organism for mechanistic, structural, genetic, and physiological studies aimed at understanding biological nitrogen fixation. This review provides a contemporary overview of these studies and places them within the context of their historical development.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"57 5-6","pages":"492-538"},"PeriodicalIF":6.5,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10034286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
2-5A-Mediated decay (2-5AMD): from antiviral defense to control of host RNA. 2-5A介导的衰变(2-5AMD):从抗病毒防御到控制宿主RNA。
IF 6.5 2区 生物学
Critical Reviews in Biochemistry and Molecular Biology Pub Date : 2022-10-01 Epub Date: 2023-03-20 DOI: 10.1080/10409238.2023.2181308
Eliza Prangley, Alexei Korennykh
{"title":"2-5A-Mediated decay (2-5AMD): from antiviral defense to control of host RNA.","authors":"Eliza Prangley, Alexei Korennykh","doi":"10.1080/10409238.2023.2181308","DOIUrl":"10.1080/10409238.2023.2181308","url":null,"abstract":"<p><p>Mammalian cells are exquisitely sensitive to the presence of double-stranded RNA (dsRNA), a molecule that they interpret as a signal of viral presence requiring immediate attention. Upon sensing dsRNA cells activate the innate immune response, which involves transcriptional mechanisms driving inflammation and secretion of interferons (IFNs) and interferon-stimulated genes (ISGs), as well as synthesis of RNA-like signaling molecules comprised of three or more 2'-5'-linked adenylates (2-5As). 2-5As were discovered some forty years ago and described as IFN-induced inhibitors of protein synthesis. The efforts of many laboratories, aimed at elucidating the molecular mechanism and function of these mysterious RNA-like signaling oligonucleotides, revealed that 2-5A is a specific ligand for the kinase-family endonuclease RNase L. RNase L decays single-stranded RNA (ssRNA) from viruses and mRNAs (as well as other RNAs) from hosts in a process we proposed to call 2-5A-mediated decay (2-5AMD). During recent years it has become increasingly recognized that 2-5AMD is more than a blunt tool of viral RNA destruction, but a pathway deeply integrated into sensing and regulation of endogenous RNAs. Here we present an overview of recently emerged roles of 2-5AMD in host RNA regulation.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"57 5-6","pages":"477-491"},"PeriodicalIF":6.5,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576847/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9678347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reversible and bidirectional signaling of notch ligands. 缺口配体的可逆和双向信号传导。
IF 6.5 2区 生物学
Critical Reviews in Biochemistry and Molecular Biology Pub Date : 2022-08-01 DOI: 10.1080/10409238.2022.2113029
Elenaé Vázquez-Ulloa, Kai-Lan Lin, Marcela Lizano, Cecilia Sahlgren
{"title":"Reversible and bidirectional signaling of notch ligands.","authors":"Elenaé Vázquez-Ulloa,&nbsp;Kai-Lan Lin,&nbsp;Marcela Lizano,&nbsp;Cecilia Sahlgren","doi":"10.1080/10409238.2022.2113029","DOIUrl":"https://doi.org/10.1080/10409238.2022.2113029","url":null,"abstract":"<p><p>The Notch signaling pathway is a direct cell-cell communication system involved in a wide variety of biological processes, and its disruption is observed in several pathologies. The pathway is comprised of a ligand-expressing (sender) cell and a receptor-expressing (receiver) cell. The canonical ligands are members of the Delta/Serrate/Lag-1 (DSL) family of proteins. Their binding to a Notch receptor in a neighboring cell induces a conformational change in the receptor, which will undergo regulated intramembrane proteolysis (RIP), liberating the Notch intracellular domain (NICD). The NICD is translocated to the nucleus and promotes gene transcription. It has been demonstrated that the ligands can also undergo RIP and nuclear translocation, suggesting a function for the ligands in the sender cell and possible bidirectionality of the Notch pathway. Although the complete mechanism of ligand processing is not entirely understood, and its dependence on Notch receptors has not been ruled out. Also, ligands have autonomous functions beyond Notch activation. Here we review the concepts of reverse and bidirectional signalization of DSL proteins and discuss the characteristics that make them more than just ligands of the Notch pathway.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"57 4","pages":"377-398"},"PeriodicalIF":6.5,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10613678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Creation and resolution of non-B-DNA structural impediments during replication. 在复制过程中产生并解决非 B-DNA 结构障碍。
IF 6.5 2区 生物学
Critical Reviews in Biochemistry and Molecular Biology Pub Date : 2022-08-01 Epub Date: 2022-09-28 DOI: 10.1080/10409238.2022.2121803
Christopher Mellor, Consuelo Perez, Julian E Sale
{"title":"Creation and resolution of non-B-DNA structural impediments during replication.","authors":"Christopher Mellor, Consuelo Perez, Julian E Sale","doi":"10.1080/10409238.2022.2121803","DOIUrl":"10.1080/10409238.2022.2121803","url":null,"abstract":"<p><p>During replication, folding of the DNA template into non-B-form secondary structures provides one of the most abundant impediments to the smooth progression of the replisome. The core replisome collaborates with multiple accessory factors to ensure timely and accurate duplication of the genome and epigenome. Here, we discuss the forces that drive non-B structure formation and the evidence that secondary structures are a significant and frequent source of replication stress that must be actively countered. Taking advantage of recent advances in the molecular and structural biology of the yeast and human replisomes, we examine how structures form and how they may be sensed and resolved during replication.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"57 4","pages":"412-442"},"PeriodicalIF":6.5,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613824/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9185161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What makes functional amyloids work? 是什么使功能性淀粉样蛋白起作用?
IF 6.5 2区 生物学
Critical Reviews in Biochemistry and Molecular Biology Pub Date : 2022-08-01 DOI: 10.1080/10409238.2022.2113030
Ansgar B Siemer
{"title":"What makes functional amyloids work?","authors":"Ansgar B Siemer","doi":"10.1080/10409238.2022.2113030","DOIUrl":"https://doi.org/10.1080/10409238.2022.2113030","url":null,"abstract":"<p><p>Although first described in the context of disease, cross-β (amyloid) fibrils have also been found as functional entities in all kingdoms of life. However, what are the specific properties of the cross-β fibril motif that convey biological function, make them especially suited for their particular purpose, and distinguish them from other fibrils found in biology? This review approaches these questions by arguing that cross-β fibrils are highly periodic, stable, and self-templating structures whose formation is accompanied by substantial conformational change that leads to a multimerization of their core and framing sequences. A discussion of each of these properties is followed by selected examples of functional cross-β fibrils that show how function is usually achieved by leveraging many of these properties.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"57 4","pages":"399-411"},"PeriodicalIF":6.5,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588633/pdf/nihms-1829681.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10044607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Hypoxia-regulated microRNAs: the molecular drivers of tumor progression. 低氧调控的microrna:肿瘤进展的分子驱动因素。
IF 6.5 2区 生物学
Critical Reviews in Biochemistry and Molecular Biology Pub Date : 2022-08-01 DOI: 10.1080/10409238.2022.2088684
Sakunie Sawai, Pooi-Fong Wong, Thamil Selvee Ramasamy
{"title":"Hypoxia-regulated microRNAs: the molecular drivers of tumor progression.","authors":"Sakunie Sawai,&nbsp;Pooi-Fong Wong,&nbsp;Thamil Selvee Ramasamy","doi":"10.1080/10409238.2022.2088684","DOIUrl":"https://doi.org/10.1080/10409238.2022.2088684","url":null,"abstract":"<p><p>Hypoxia is a common feature of the tumor microenvironment (TME) of nearly all solid tumors, leading to therapeutic failure. The changes in stiffness of the extracellular matrix (ECM), pH gradients, and chemical balance that contribute to multiple cancer hallmarks are closely regulated by intratumoral oxygen tension <i>via</i> its primary mediators, hypoxia-inducible factors (HIFs). HIFs, especially HIF-1α, influence these changes in the TME by regulating vital cancer-associated signaling pathways and cellular processes including MAPK/ERK, NF-κB, STAT3, PI3K/Akt, Wnt, p53, and glycolysis. Interestingly, research has revealed the involvement of epigenetic regulation by hypoxia-regulated microRNAs (HRMs) of downstream target genes involved in these signaling. Through literature search and analysis, we identified 48 HRMs that have a functional role in the regulation of 5 key cellular processes: proliferation, metabolism, survival, invasion and migration, and immunoregulation in various cancers in hypoxic condition. Among these HRMs, 17 were identified to be directly associated with HIFs which include miR-135b, miR-145, miR-155, miR-181a, miR-182, miR-210, miR-224, miR-301a, and miR-675-5p as oncomiRNAs, and miR-100-5p, miR-138, miR-138-5p, miR-153, miR-22, miR-338-3p, miR-519d-3p, and miR-548an as tumor suppressor miRNAs. These HRMs serve as a potential lead in the development of miRNA-based targeted therapy for advanced solid tumors. Future development of combined HIF-targeted and miRNA-targeted therapy is possible, which requires comprehensive profiling of HIFs-HRMs regulatory network, and improved formula of the delivery vehicles to enhance the therapeutic kinetics of the targeted cancer therapy (TCT) moving forward.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"57 4","pages":"351-376"},"PeriodicalIF":6.5,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10668748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Energetics, kinetics, and pathways of SNARE assembly in membrane fusion. 膜融合中SNARE组装的能量学、动力学和途径。
IF 6.5 2区 生物学
Critical Reviews in Biochemistry and Molecular Biology Pub Date : 2022-08-01 DOI: 10.1080/10409238.2022.2121804
Yongli Zhang, Lu Ma, Huan Bao
{"title":"Energetics, kinetics, and pathways of SNARE assembly in membrane fusion.","authors":"Yongli Zhang,&nbsp;Lu Ma,&nbsp;Huan Bao","doi":"10.1080/10409238.2022.2121804","DOIUrl":"https://doi.org/10.1080/10409238.2022.2121804","url":null,"abstract":"<p><p>Fusion of transmitter-containing vesicles with plasma membranes at the synaptic and neuromuscular junctions mediates neurotransmission and muscle contractions, respectively, thereby underlying all thoughts and actions. The fusion process is driven by the coupled folding and assembly of three synaptic SNARE proteins--syntaxin-1 and SNAP-25 on the target plasma membrane (t-SNAREs) and VAMP2 on the vesicular membrane (v-SNARE) into a four-helix bundle. Their assembly is chaperoned by Munc18-1 and many other proteins to achieve the speed and accuracy required for neurotransmission. However, the physiological pathway of SNARE assembly and its coupling to membrane fusion remains unclear. Here, we review recent progress in understanding SNARE assembly and membrane fusion, with a focus on results obtained by single-molecule manipulation approaches and electric recordings of single fusion pores. We describe two pathways of synaptic SNARE assembly, their associated intermediates, energetics, and kinetics. Assembly of the three SNAREs <i>in vitro</i> begins with the formation of a t-SNARE binary complex, on which VAMP2 folds in a stepwise zipper-like fashion. Munc18-1 significantly alters the SNARE assembly pathway: syntaxin-1 and VAMP2 first bind on the surface of Munc18-1 to form a template complex, with which SNAP-25 associates to conclude SNARE assembly and displace Munc18-1. During membrane fusion, multiple trans-SNARE complexes cooperate to open a dynamic fusion pore in a manner dependent upon their copy number and zippering states. Together, these results demonstrate that stepwise and cooperative SNARE assembly drive stagewise membrane fusion.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"57 4","pages":"443-460"},"PeriodicalIF":6.5,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588726/pdf/nihms-1835201.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10669210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
The mechanisms of human lymphoid chromosomal translocations and their medical relevance. 人类淋巴样染色体易位的机制及其医学意义。
IF 6.5 2区 生物学
Critical Reviews in Biochemistry and Molecular Biology Pub Date : 2022-06-01 DOI: 10.1080/10409238.2021.2004576
Di Liu, Michael R Lieber
{"title":"The mechanisms of human lymphoid chromosomal translocations and their medical relevance.","authors":"Di Liu,&nbsp;Michael R Lieber","doi":"10.1080/10409238.2021.2004576","DOIUrl":"https://doi.org/10.1080/10409238.2021.2004576","url":null,"abstract":"<p><p>The most common human lymphoid chromosomal translocations involve concurrent failures of the recombination activating gene (RAG) complex and Activation-Induced Deaminase (AID). These are two enzymes that are normally expressed for purposes of the two site-specific DNA recombination processes: V(D)J recombination and class switch recombination (CSR). First, though it is rare, a low level of expression of AID can introduce long-lived T:G mismatch lesions at 20-600 bp fragile zones. Second, the V(D)J recombination process can occasionally fail to rejoin coding ends, and this failure may permit an opportunity for Artemis:DNA-dependent kinase catalytic subunit (DNA-PKcs) to convert the T:G mismatch sites at the fragile zones into double-strand breaks. The 20-600 bp fragile zones must be, at least transiently, in a single-stranded DNA (ssDNA) state for the first step to occur, because AID only acts on ssDNA. Here we discuss the key DNA sequence features that lead to AID action at a fragile zone, which are (a) the proximity and density of strings of cytosine nucleotides (C-strings) that cause a B/A-intermediate DNA conformation; (b) overlapping AID hotspots that contain a methyl CpG (WRCG), which AID converts to a long-lived T:G mismatch; and (c) transcription, which, though not essential, favors increased ssDNA in the fragile zone. We also summarize chromosomal features of the focal fragile zones in lymphoid malignancies and discuss the clinical relevance of understanding the translocation mechanisms. Many of the key principles covered here are also relevant to chromosomal translocations in non-lymphoid somatic cells as well.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"57 3","pages":"227-243"},"PeriodicalIF":6.5,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632267/pdf/nihms-1845758.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9608418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Emerging biological functions of ribonuclease 1 and angiogenin. 核糖核酸酶1和血管生成素新出现的生物学功能。
IF 6.5 2区 生物学
Critical Reviews in Biochemistry and Molecular Biology Pub Date : 2022-06-01 DOI: 10.1080/10409238.2021.2004577
Emily R Garnett, Ronald T Raines
{"title":"Emerging biological functions of ribonuclease 1 and angiogenin.","authors":"Emily R Garnett,&nbsp;Ronald T Raines","doi":"10.1080/10409238.2021.2004577","DOIUrl":"https://doi.org/10.1080/10409238.2021.2004577","url":null,"abstract":"<p><p>Pancreatic-type ribonucleases (ptRNases) are a large family of vertebrate-specific secretory endoribonucleases. These enzymes catalyze the degradation of many RNA substrates and thereby mediate a variety of biological functions. Though the homology of ptRNases has informed biochemical characterization and evolutionary analyses, the understanding of their biological roles is incomplete. Here, we review the functions of two ptRNases: RNase 1 and angiogenin. RNase 1, which is an abundant ptRNase with high catalytic activity, has newly discovered roles in inflammation and blood coagulation. Angiogenin, which promotes neovascularization, is now known to play roles in the progression of cancer and amyotrophic lateral sclerosis, as well as in the cellular stress response. Ongoing work is illuminating the biology of these and other ptRNases.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"57 3","pages":"244-260"},"PeriodicalIF":6.5,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9156540/pdf/nihms-1766319.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9555448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Structure and function of ClpXP, a AAA+ proteolytic machine powered by probabilistic ATP hydrolysis. 由概率ATP水解驱动的AAA+蛋白水解机ClpXP的结构和功能。
IF 6.5 2区 生物学
Critical Reviews in Biochemistry and Molecular Biology Pub Date : 2022-04-01 DOI: 10.1080/10409238.2021.1979461
Robert T Sauer, Xue Fei, Tristan A Bell, Tania A Baker
{"title":"Structure and function of ClpXP, a AAA+ proteolytic machine powered by probabilistic ATP hydrolysis.","authors":"Robert T Sauer,&nbsp;Xue Fei,&nbsp;Tristan A Bell,&nbsp;Tania A Baker","doi":"10.1080/10409238.2021.1979461","DOIUrl":"https://doi.org/10.1080/10409238.2021.1979461","url":null,"abstract":"<p><p>ClpXP is an archetypical AAA+ protease, consisting of ClpX and ClpP. ClpX is an ATP-dependent protein unfoldase and polypeptide translocase, whereas ClpP is a self-compartmentalized peptidase. ClpXP is currently the only AAA+ protease for which high-resolution structures exist, the molecular basis of recognition for a protein substrate is understood, extensive biochemical and genetic analysis have been performed, and single-molecule optical trapping has allowed direct visualization of the kinetics of substrate unfolding and translocation. In this review, we discuss our current understanding of ClpXP structure and function, evaluate competing sequential and probabilistic mechanisms of ATP hydrolysis, and highlight open questions for future exploration.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"57 2","pages":"188-204"},"PeriodicalIF":6.5,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9871882/pdf/nihms-1863995.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9225763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信