Critical Reviews in Biochemistry and Molecular Biology最新文献

筛选
英文 中文
Methanogens and what they tell us about how life might survive on Mars. 甲烷菌及其对火星生命生存方式的启示。
IF 6.2 2区 生物学
Critical Reviews in Biochemistry and Molecular Biology Pub Date : 2024-11-03 DOI: 10.1080/10409238.2024.2418639
Chellapandi Paulchamy, Sreekutty Vakkattuthundi Premji, Saranya Shanmugam
{"title":"Methanogens and what they tell us about how life might survive on Mars.","authors":"Chellapandi Paulchamy, Sreekutty Vakkattuthundi Premji, Saranya Shanmugam","doi":"10.1080/10409238.2024.2418639","DOIUrl":"https://doi.org/10.1080/10409238.2024.2418639","url":null,"abstract":"<p><p>Space exploration and research are uncovering the potential for terrestrial life to survive in outer space, as well as the environmental factors that affect life during interplanetary transfer. The presence of methane in the Martian atmosphere suggests the possibility of methanogens, either extant or extinct, on Mars. Understanding how methanogens survive and adapt under space-exposed conditions is crucial for understanding the implications of extraterrestrial life. In this article, we discuss methanogens as model organisms for obtaining energy transducers and producing methane in a simulated Martian environment. We also explore the chemical evolution of cellular composition and growth maintenance to support survival in extraterrestrial environments. Neutral selective pressure is imposed on the chemical composition of cellular components to increase cell survival and reduce growth under physiological conditions. Energy limitation is an evolutionary driver of macromolecular polymerization, growth maintenance, and survival fitness of methanogens. Methanogens grown in a Martian environment may exhibit global alterations in their metabolic function and gene expression at the system scale. A space systems biology approach would further elucidate molecular survival mechanisms and adaptation to a drastic outer space environment. Therefore, identifying a genetically stable methanogenic community is essential for biomethane production from waste recycling to achieve sustainable space-life support functions.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":6.2,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution, classification, and mechanisms of transport, activity regulation, and substrate specificity of ZIP metal transporters. ZIP 金属转运体的进化、分类和转运机制、活性调节和底物特异性。
IF 6.2 2区 生物学
Critical Reviews in Biochemistry and Molecular Biology Pub Date : 2024-10-21 DOI: 10.1080/10409238.2024.2405476
Jian Hu, Yuhan Jiang
{"title":"Evolution, classification, and mechanisms of transport, activity regulation, and substrate specificity of ZIP metal transporters.","authors":"Jian Hu, Yuhan Jiang","doi":"10.1080/10409238.2024.2405476","DOIUrl":"https://doi.org/10.1080/10409238.2024.2405476","url":null,"abstract":"<p><p>The Zrt/Irt-like protein (ZIP) family consists of ubiquitously expressed divalent <i>d</i>-block metal transporters that play central roles in the uptake, secretion, excretion, and distribution of several essential and toxic metals in living organisms. The past few years has witnessed rapid progress in the molecular basis of these membrane transport proteins. In this critical review, we summarize the research progress at the molecular level of the ZIP family and discuss the future prospects. Furthermore, an evolutionary path for the unique ZIP fold and a new classification of the ZIP family are proposed based on the presented structural and sequence analyses.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":6.2,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms of immune evasion by Mycobacterium tuberculosis: the impact of T7SS and cell wall lipids on host defenses. 结核分枝杆菌逃避免疫的机制:T7SS 和细胞壁脂质对宿主防御的影响。
IF 6.2 2区 生物学
Critical Reviews in Biochemistry and Molecular Biology Pub Date : 2024-10-08 DOI: 10.1080/10409238.2024.2411264
Asrar Ahmad Malik, Mohd Shariq, Javaid Ahmad Sheikh, Udyeshita Jaiswal, Haleema Fayaz, Gauri Shrivastava, Nasreen Z Ehtesham, Seyed E Hasnain
{"title":"Mechanisms of immune evasion by <i>Mycobacterium tuberculosis</i>: the impact of T7SS and cell wall lipids on host defenses.","authors":"Asrar Ahmad Malik, Mohd Shariq, Javaid Ahmad Sheikh, Udyeshita Jaiswal, Haleema Fayaz, Gauri Shrivastava, Nasreen Z Ehtesham, Seyed E Hasnain","doi":"10.1080/10409238.2024.2411264","DOIUrl":"https://doi.org/10.1080/10409238.2024.2411264","url":null,"abstract":"","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":6.2,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. RNA 聚合酶 II 的一般转录因子 (GTFs) 及其在植物发育和胁迫反应中的作用。
IF 6.2 2区 生物学
Critical Reviews in Biochemistry and Molecular Biology Pub Date : 2024-10-03 DOI: 10.1080/10409238.2024.2408562
Shivam Sharma, Sanjay Kapoor, Athar Ansari, Akhilesh Kumar Tyagi
{"title":"The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses.","authors":"Shivam Sharma, Sanjay Kapoor, Athar Ansari, Akhilesh Kumar Tyagi","doi":"10.1080/10409238.2024.2408562","DOIUrl":"https://doi.org/10.1080/10409238.2024.2408562","url":null,"abstract":"<p><p>In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":6.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exercise training and changes in skeletal muscle mitochondrial proteins: from blots to "omics". 运动训练与骨骼肌线粒体蛋白质的变化:从印迹到 "omics"。
IF 6.5 2区 生物学
Critical Reviews in Biochemistry and Molecular Biology Pub Date : 2024-09-17 DOI: 10.1080/10409238.2024.2383408
Elizabeth G Reisman,Nikeisha J Caruana,David J Bishop
{"title":"Exercise training and changes in skeletal muscle mitochondrial proteins: from blots to \"omics\".","authors":"Elizabeth G Reisman,Nikeisha J Caruana,David J Bishop","doi":"10.1080/10409238.2024.2383408","DOIUrl":"https://doi.org/10.1080/10409238.2024.2383408","url":null,"abstract":"Mitochondria are essential, membrane-enclosed organelles that consist of ∼1100 different proteins, which allow for many diverse functions critical to maintaining metabolism. Highly metabolic tissues, such as skeletal muscle, have a high mitochondrial content that increases with exercise training. The classic western blot technique has revealed training-induced increases in the relatively small number of individual mitochondrial proteins studied (∼5% of the >1100 proteins in MitoCarta), with some of these changes dependent on the training stimulus. Proteomic approaches have identified hundreds of additional mitochondrial proteins that respond to exercise training. There is, however, surprisingly little crossover in the mitochondrial proteins identified in the published human training studies. This suggests that to better understand the link between training-induced changes in mitochondrial proteins and metabolism, future studies need to move beyond maximizing protein detection to adopting methods that will increase the reliability of the changes in protein abundance observed.","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The biogenesis of potassium transporters: implications of disease-associated mutations. 钾转运体的生物生成:疾病相关突变的影响。
IF 6.2 2区 生物学
Critical Reviews in Biochemistry and Molecular Biology Pub Date : 2024-06-01 Epub Date: 2024-07-01 DOI: 10.1080/10409238.2024.2369986
Morgan Kok, Jeffrey L Brodsky
{"title":"The biogenesis of potassium transporters: implications of disease-associated mutations.","authors":"Morgan Kok, Jeffrey L Brodsky","doi":"10.1080/10409238.2024.2369986","DOIUrl":"10.1080/10409238.2024.2369986","url":null,"abstract":"<p><p>The concentration of intracellular and extracellular potassium is tightly regulated due to the action of various ion transporters, channels, and pumps, which reside primarily in the kidney. Yet, potassium transporters and cotransporters play vital roles in all organs and cell types. Perhaps not surprisingly, defects in the biogenesis, function, and/or regulation of these proteins are linked to range of catastrophic human diseases, but to date, few drugs have been approved to treat these maladies. In this review, we discuss the structure, function, and activity of a group of potassium-chloride cotransporters, the KCCs, as well as the related sodium-potassium-chloride cotransporters, the NKCCs. Diseases associated with each of the four KCCs and two NKCCs are also discussed. Particular emphasis is placed on how these complex membrane proteins fold and mature in the endoplasmic reticulum, how non-native forms of the cotransporters are destroyed in the cell, and which cellular factors oversee their maturation and transport to the cell surface. When known, we also outline how the levels and activities of each cotransporter are regulated. Open questions in the field and avenues for future investigations are further outlined.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":6.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444911/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pioneer factors: nature or nurture? 先驱因素:天性还是后天培养?
IF 6.2 2区 生物学
Critical Reviews in Biochemistry and Molecular Biology Pub Date : 2024-06-01 Epub Date: 2024-05-22 DOI: 10.1080/10409238.2024.2355885
Shane Stoeber, Holly Godin, Cheng Xu, Lu Bai
{"title":"Pioneer factors: nature or nurture?","authors":"Shane Stoeber, Holly Godin, Cheng Xu, Lu Bai","doi":"10.1080/10409238.2024.2355885","DOIUrl":"10.1080/10409238.2024.2355885","url":null,"abstract":"<p><p>Chromatin is densely packed with nucleosomes, which limits the accessibility of many chromatin-associated proteins. Pioneer factors (PFs) are usually viewed as a special group of sequence-specific transcription factors (TFs) that can recognize nucleosome-embedded motifs, invade compact chromatin, and generate open chromatin regions. Through this process, PFs initiate a cascade of events that play key roles in gene regulation and cell differentiation. A current debate in the field is if PFs belong to a unique subset of TFs with intrinsic \"pioneering activity\", or if all TFs have the potential to function as PFs within certain cellular contexts. There are also different views regarding the key feature(s) that define pioneering activity. In this review, we present evidence from the literature related to these alternative views and discuss how to potentially reconcile them. It is possible that both intrinsic properties, like tight nucleosome binding and structural compatibility, and cellular conditions, like concentration and co-factor availability, are important for PF function.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":6.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444900/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141080287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial sirtuin 3 and role of natural compounds: the effect of post-translational modifications on cellular metabolism. 线粒体 sirtuin 3 和天然化合物的作用:翻译后修饰对细胞代谢的影响。
IF 6.2 2区 生物学
Critical Reviews in Biochemistry and Molecular Biology Pub Date : 2024-06-01 Epub Date: 2024-07-11 DOI: 10.1080/10409238.2024.2377094
Francesca Oppedisano, Salvatore Nesci, Anna Spagnoletta
{"title":"Mitochondrial sirtuin 3 and role of natural compounds: the effect of post-translational modifications on cellular metabolism.","authors":"Francesca Oppedisano, Salvatore Nesci, Anna Spagnoletta","doi":"10.1080/10409238.2024.2377094","DOIUrl":"10.1080/10409238.2024.2377094","url":null,"abstract":"<p><p>Sirtuins (SIRTs) are a family of proteins with enzymatic activity. In particular, they are a family of class III NAD<sup>+</sup>-dependent histone deacetylases and ADP-ribosyltransferases. NAD<sup>+</sup>-dependent deac(et)ylase activities catalyzed by sirtuin include ac(et)ylation, propionylation, butyrylation, crotonylation, manylation, and succinylation. Specifically, human SIRT3 is a 399 amino acid protein with two functional domains: a large Rossmann folding motif and NAD<sup>+</sup> binding, and a small complex helix and zinc-binding motif. SIRT3 is widely expressed in mitochondria-rich tissues and is involved in maintaining mitochondrial integrity, homeostasis, and function. Moreover, SIRT3 regulates related diseases, such as aging, hepatic, kidney, neurodegenerative and cardiovascular disease, metabolic diseases, and cancer development. In particular, one of the most significant and damaging post-translational modifications is irreversible protein oxidation, i.e. carbonylation. This process is induced explicitly by increased ROS production due to mitochondrial dysfunction. SIRT3 is carbonylated by 4-hydroxynonenal at the level of Cys<sub>280</sub>. The carbonylation induces conformational changes in the active site, resulting in allosteric inhibition of SIRT3 activity and loss of the ability to deacetylate and regulate antioxidant enzyme activity. Phytochemicals and, in particular, polyphenols, thanks to their strong antioxidant activity, are natural compounds with a positive regulatory action on SIRT3 in various pathologies. Indeed, the enzymatic SIRT3 activity is modulated, for example, by different natural polyphenol classes, including resveratrol and the bergamot polyphenolic fraction. Thus, this review aims to elucidate the mechanisms by which phytochemicals can interact with SIRT3, resulting in post-translational modifications that regulate cellular metabolism.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":6.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elucidating the chain of command: our current understanding of critical target genes for p53-mediated tumor suppression. 阐明指挥链:我们目前对 p53 介导的肿瘤抑制关键靶基因的了解。
IF 6.5 2区 生物学
Critical Reviews in Biochemistry and Molecular Biology Pub Date : 2024-04-25 DOI: 10.1080/10409238.2024.2344465
Alexandra Indeglia, Maureen E Murphy
{"title":"Elucidating the chain of command: our current understanding of critical target genes for p53-mediated tumor suppression.","authors":"Alexandra Indeglia, Maureen E Murphy","doi":"10.1080/10409238.2024.2344465","DOIUrl":"https://doi.org/10.1080/10409238.2024.2344465","url":null,"abstract":"TP53 encodes a transcription factor that is centrally-involved in several pathways, including the control of metabolism, the stress response, DNA repair, cell cycle arrest, senescence, programmed cell death, and others. Since the discovery of TP53 as the most frequently-mutated tumor suppressor gene in cancer over four decades ago, the field has focused on uncovering target genes of this transcription factor that are essential for tumor suppression. This search has been fraught with red herrings, however. Dozens of p53 target genes were discovered that had logical roles in tumor suppression, but subsequent data showed that most were not tumor suppressive, and were dispensable for p53-mediated tumor suppression. In this review, we focus on p53 transcriptional targets in two categories: (1) canonical targets like CDKN1A (p21) and BBC3 (PUMA), which clearly play critical roles in p53-mediated cell cycle arrest/senescence and cell death, but which are not mutated in cancer, and for which knockout mice fail to develop spontaneous tumors; and (2) a smaller category of recently-described p53 target genes that are mutated in human cancer, and which appear to be critical for tumor suppression by p53. Interestingly, many of these genes encode proteins that control broad cellular pathways, like splicing and protein degradation, and several of them encode proteins that feed back to regulate p53. These include ZMAT3, GLS2, PADI4, ZBXW7, RFX7, and BTG2. The findings from these studies provide a more complex, but exciting, potential framework for understanding the role of p53 in tumor suppression.","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140654075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular insights into the prototypical single-stranded DNA-binding protein from E. coli. 大肠杆菌单链 DNA 结合蛋白原型的分子研究。
IF 6.2 2区 生物学
Critical Reviews in Biochemistry and Molecular Biology Pub Date : 2024-02-01 Epub Date: 2024-05-21 DOI: 10.1080/10409238.2024.2330372
Nina J Bonde, Alexander G Kozlov, Michael M Cox, Timothy M Lohman, James L Keck
{"title":"Molecular insights into the prototypical single-stranded DNA-binding protein from <i>E. coli</i>.","authors":"Nina J Bonde, Alexander G Kozlov, Michael M Cox, Timothy M Lohman, James L Keck","doi":"10.1080/10409238.2024.2330372","DOIUrl":"10.1080/10409238.2024.2330372","url":null,"abstract":"<p><p>The SSB protein of <i>Escherichia coli</i> functions to bind single-stranded DNA wherever it occurs during DNA metabolism. Depending upon conditions, SSB occurs in several different binding modes. In the course of its function, SSB diffuses on ssDNA and transfers rapidly between different segments of ssDNA. SSB interacts with many other proteins involved in DNA metabolism, with 22 such SSB-interacting proteins, or SIPs, defined to date. These interactions chiefly involve the disordered and conserved C-terminal residues of SSB. When not bound to ssDNA, SSB can aggregate to form a phase-separated biomolecular condensate. Current understanding of the properties of SSB and the functional significance of its many intermolecular interactions are summarized in this review.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":6.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11209772/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141069950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信