Crop Protection最新文献

筛选
英文 中文
Economic thresholds and economic injury level for pea aphid in tannin and low tannin faba bean 单宁酸和低单宁酸蚕豆中豌豆蚜的经济阈值和经济损失水平
IF 2.5 2区 农林科学
Crop Protection Pub Date : 2024-08-27 DOI: 10.1016/j.cropro.2024.106919
{"title":"Economic thresholds and economic injury level for pea aphid in tannin and low tannin faba bean","authors":"","doi":"10.1016/j.cropro.2024.106919","DOIUrl":"10.1016/j.cropro.2024.106919","url":null,"abstract":"<div><p>Pea aphids, <em>Acyrthosiphon pisum</em>, are one of the major insect pests of faba bean (<em>Vicia faba</em>). Infestations of pea aphids on faba bean can occur at any plant growth stage and result in drastic yield losses (up to 100%). There was no established guideline to determine when to manage pea aphids on faba bean in Saskatchewan. We conducted a field study to develop an economic threshold for pea aphids on faba bean at six sites in the Saskatoon area in 2019 and 2020. No choice experiments were performed to determine pea aphid growth rate on tannin and low tannin faba bean. Under field conditions, the population of pea aphids on faba bean doubled in approximately 5.25 ± 0.19 days. The average economic threshold (ET) was 34–50 aphids per main stem of a plant. This ET provides a 7-day lead time before aphid populations are expected to exceed the economic injury level (EIL) of 680–984 cumulative aphid days or 96 to 142 aphids per faba bean main stem. All ETs were estimated based on the cost of registered insecticides and the average of three benchmark prices (high, medium and low) of faba bean from January 2018 to July 2021. Laboratory no-choice bioassays demonstrated no significant effect of faba bean tannins on pea aphid growth. Therefore, economic thresholds established in this study are applicable to both tannin and low tannin varieties of faba bean.</p></div>","PeriodicalId":10785,"journal":{"name":"Crop Protection","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0261219424003478/pdfft?md5=ed5683cc2c1d608417091abdb97eb8c7&pid=1-s2.0-S0261219424003478-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation mechanism of droplets wetting on banana leaf surface and its dynamic contact angle wetting model 蕉叶表面水滴润湿的调节机制及其动态接触角润湿模型
IF 2.5 2区 农林科学
Crop Protection Pub Date : 2024-08-27 DOI: 10.1016/j.cropro.2024.106920
{"title":"Regulation mechanism of droplets wetting on banana leaf surface and its dynamic contact angle wetting model","authors":"","doi":"10.1016/j.cropro.2024.106920","DOIUrl":"10.1016/j.cropro.2024.106920","url":null,"abstract":"<div><p>The effective wetting and deposition of pesticide droplets on the leaf surface significantly affect the control of pests and diseases, and its mainly affected by the leaf surface properties and pesticide formulation properties. This article aims to investigate the wettability regulation mechanism and dynamic wetting properties of banana leaves, in order to intelligently design appropriate pesticide formulations. The micro-morphology of the banana leaves exhibits a micro-nano dual-scale structure with different microstructures and roughness on the adaxial side and abaxial side. Correspondingly, the wettability on the adaxial side of the banana leaf with higher roughness (<em>R</em><sub><em>q</em></sub> = 71.1 nm) is always better than that on the abaxial side (<em>R</em><sub><em>q</em></sub> = 42.5 nm). The droplet contact performance of droplets exhibits a strong concentration dependence of surfactants, which regulate the inter-species differences in the wettability of different pesticide formulations on both sides. Besides, the dynamic wetting process of pesticide droplets exhibits strong time dependence, by using a time series method to establish an <em>AR</em>(2) model, precise simulation and prediction of the contact angle changes on the adaxial side (<em>R</em><sup><em>2</em></sup> = 0.9560) and abaxial side (<em>R</em><sup><em>2</em></sup> = 0.8903) during the dynamic wetting process were achieved. The dynamic wetting model provides new insights into the spreading and deposition processes of droplets on leaves. This work provides a favorable reference for the study of the dynamic balance between wetting and adhesion properties of pesticide spray on leaf surfaces.</p></div>","PeriodicalId":10785,"journal":{"name":"Crop Protection","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on improvement strategies for a lightweight multi-object weed detection network based on YOLOv5 基于 YOLOv5 的轻量级多目标杂草检测网络改进策略研究
IF 2.5 2区 农林科学
Crop Protection Pub Date : 2024-08-26 DOI: 10.1016/j.cropro.2024.106912
{"title":"Research on improvement strategies for a lightweight multi-object weed detection network based on YOLOv5","authors":"","doi":"10.1016/j.cropro.2024.106912","DOIUrl":"10.1016/j.cropro.2024.106912","url":null,"abstract":"<div><p>Traditional weed detection technology has several limitations, including low detection accuracy, substantial computational demands, and large-scale detection models. To meet the requirements of weed multi-target identification and portability, this study proposes the YOLO–WEED model for weed recognition. The proposed model has the following innovations: (1) The backbone standard convolution module in YOLOv5 was replaced by the lightweight MobileNetv3 network to simplify the network structure and reduce parameter complexity; (2) The addition of convolutional block attention module (CBAM) to the neck network enabled the model to focus on the most important features while filtering out noise and irrelevant information; (3) To further improve classification accuracy and reduce loss, the C2f module was employed to improve the C3 module in the neck network; and (4) During the model plot process, a coordinate variable was added in the box label to help the model accurately locate the weeds. In the study, six species of weeds and one crop were used as test subjects. After image enhancement techniques were used, ablation experiments were deployed. The experimental results indicated that the YOLO–WEED model achieved an average accuracy of 92.5% in identifying six types of weeds and one type of crop. The accuracies for each type of plant were 82.7%, 97.3%, 98.8%, 86%, 93.5%, 99.3% and 89.6%, respectively. The number of model parameters was reduced by 39.4% compared with YOLOv5s. Furthermore, the localisation, classification and object losses were reduced by 0.025, 0.005 and 0.014, respectively. The model optimisation and deployment of the Jetson mobile terminal for multi-target detection were realised, and the performance was better than six network models such as YOLOv5s.</p></div>","PeriodicalId":10785,"journal":{"name":"Crop Protection","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142117388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Postharvest fruit rot on red guava caused by Neopestalotiopsis saprophytica newly reported in Hainan Province China 中国海南省新报告的红番石榴采后果实腐烂病由Neopestalotiopsis saprophytica引起
IF 2.5 2区 农林科学
Crop Protection Pub Date : 2024-08-26 DOI: 10.1016/j.cropro.2024.106915
{"title":"Postharvest fruit rot on red guava caused by Neopestalotiopsis saprophytica newly reported in Hainan Province China","authors":"","doi":"10.1016/j.cropro.2024.106915","DOIUrl":"10.1016/j.cropro.2024.106915","url":null,"abstract":"<div><p>Red Guava is widely grown in numerous parts of southern China and is a favorite fruit among Chinese consumers due to its imperative nutritional value, high medicine value and excellent economic value. Black spot is one of the serious diseases that causes fruits rot. In July 2023, 25–30% of postharvest red guava fruits rot exhibiting disease symptoms were observed in surrounding markets of Haikou city, Hainan province, China. The purpose of this study was to isolate and identify the pathogenic fungi of red guava black spot. A total of 26 pathogenic fungal strains were isolated from the rotten red guava fruits with typical characteristics. One representative isolate, FSL2, was selected for subsequent experiments. Combining morphological analysis with phylogenetic analysis (internal transcribed spacer regions 4 and 5, translation elongation factor1, and β-tubulin genes), the pathogens should be identified as <em>Neopestalotiopsis saprophytica</em>. Pathogenic tests indicated that the symptoms of red guava fruit decay caused by <em>N. saprophytica</em> isolated from the sample were almost the same. The fungal species has been previously reported in China on Persimmon related with fruits rot. Thus, this study concluded that the pathogen of red guava black spot may be <em>N. saprophytica</em>. To best of our knowledge, this is the first report of red guava black spot caused by <em>N. saprophytica</em>.</p></div>","PeriodicalId":10785,"journal":{"name":"Crop Protection","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142076388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weed and yield of different field pea seed rates and carryover effect of ALS inhibitor herbicides applied in preceding wheat crop 不同大田豌豆播种率的杂草和产量以及在前茬小麦作物中施用 ALS 抑制剂除草剂的残留影响
IF 2.5 2区 农林科学
Crop Protection Pub Date : 2024-08-26 DOI: 10.1016/j.cropro.2024.106911
{"title":"Weed and yield of different field pea seed rates and carryover effect of ALS inhibitor herbicides applied in preceding wheat crop","authors":"","doi":"10.1016/j.cropro.2024.106911","DOIUrl":"10.1016/j.cropro.2024.106911","url":null,"abstract":"<div><p>Intercropping with greater pulse seeding rates for weed mitigation could increase growers yield returns and potentially reduce weed resistance, caused by frequent herbicide applications. In 2021, a split-split plot experiment in North Star, Alberta was sown to wheat (<em>Triticum aestivum</em> L.) in two fields; half the plots were sprayed with Thifensulfuron-methyl + tribenuron-methyl at 29.65 g.a.i.ha<sup>−1</sup> (9.89 + 4.94 respectively) at flag leaf with other half left untreated. In the following spring (2022), field pea (<em>Pisum sativum</em> L.) was sown at 0.5X, 1X and 1.5X seeding rate (101, 202 and 303 kgha<sup>−1</sup>, respectively) with either ryegrass (<em>Lolium multiflorum</em> L.) or rye (<em>Secale cereale</em> L.) at 5.6 and 19.1 kgha<sup>−1</sup>, barley (<em>Hordeum vulgare</em> L.) or oat (<em>Avena fatua</em> L.) at 33.7 kgha<sup>−1</sup>, plus monocrop control. Objectives were to a) identify most weed suppressive intercrop, and b) how companion crops affected pea seeding rates. Herbicide sprayed plots had less weeds compared to unsprayed despite cropping system adopted and rye was best companion crop to reduce weeds. Rye-pea (1.11) or ryegrass-pea (0.98) land equivalent ratio (LER) were greater than oat-pea (0.75). Cereal Agressivity (A) (2.64X10<sup>−3</sup> and 2.18X10<sup>−2</sup> in oat and barley) and actual yield loss (AYL) (3.06 in oat, 0,39 in barley) was greater than pea (−2.67X10<sup>−3</sup>, −2.29X10<sup>−2</sup> for A and 2.95, 0.73 for AYL in oat and barley respectively), inversely to competitive ratio (CR) (0.07, 2.60 in oat and pea; 0.25, 0.63 in barley and pea). More pea stands decreased cereal CR (0.36,0.11 and 0.05 at 0.5X, 1X and 1.5X pea seeding rates) and AYL (1.56, 1.41 and 0.59 for same pea seeding rates). Overall, a) increasing pea seeding rates reduce weeds and increase competitivity towards cereals, and b) despite rye being more suppressing, barley and oat promote pea yields with less area likewise. This study demonstrated the variety of IWM strategies possible in Northern Alberta.</p></div>","PeriodicalId":10785,"journal":{"name":"Crop Protection","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142094914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficacy of slow sand filtration enriched with Trichoderma atroviride in the control of Rhizoctonia solani in soilless culture 在无土栽培中使用富含毛霉的慢沙过滤法防治根瘤菌的功效
IF 2.5 2区 农林科学
Crop Protection Pub Date : 2024-08-26 DOI: 10.1016/j.cropro.2024.106917
{"title":"Efficacy of slow sand filtration enriched with Trichoderma atroviride in the control of Rhizoctonia solani in soilless culture","authors":"","doi":"10.1016/j.cropro.2024.106917","DOIUrl":"10.1016/j.cropro.2024.106917","url":null,"abstract":"<div><p>Soilless cultivation is increasingly common, but the nutrient-rich drainage from substrate cultivation is often discarded. However, drainage can be safely reused if previously disinfected. Slow sand filtration (SSF) is a low-cost, ecological, and effective method for water disinfection, primarily through biological control. Enhancing SSF with antagonistic microorganisms is not well-studied. Additionally, SSF has not been tested to control <em>Rhizoctonia solani</em>, a phytopathogen that can be spread by irrigation water. Therefore, the objective of his work was to test the efficacy of a slow sand filter improved through the inoculation of the antagonistic fungus <em>Trichoderma atroviride</em>, evaluating its suppression capacity against <em>Rhizoctonia solani</em> spread by the irrigation water in a closed substrate cultivation of cucumber (<em>Cucumis sativus</em>). Five experiments were conducted, testing the presence and absence of a sand filter, <em>T. atroviride</em>, and <em>R. solani</em> in each trial. Median disease severity was expressed on a scale of 1–5. The improved SSF increased disease control percentage by 49% compared to SSF alone and by 86% compared to no disease control method. In some experiments, SSF with <em>T. atroviride</em> totally controlled <em>R. solani</em>. The results confirm that biologically enhanced SSF with <em>T. atroviride</em> can effectively disinfect drainage in closed soilless cultivation systems infected with <em>R. solani.</em></p></div>","PeriodicalId":10785,"journal":{"name":"Crop Protection","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142094913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pigeonpea cyst nematode (Heterodera cajani Koshy) pathogenicity in black gram (Vigna mungo L.): Quantitative and qualitative yield losses, and bio- organic management 黑糯米(Vigna mungo L.)中鸽豆胞囊线虫(Heterodera cajani Koshy)的致病性:定量和定性产量损失以及生物有机管理
IF 2.5 2区 农林科学
Crop Protection Pub Date : 2024-08-24 DOI: 10.1016/j.cropro.2024.106916
{"title":"Pigeonpea cyst nematode (Heterodera cajani Koshy) pathogenicity in black gram (Vigna mungo L.): Quantitative and qualitative yield losses, and bio- organic management","authors":"","doi":"10.1016/j.cropro.2024.106916","DOIUrl":"10.1016/j.cropro.2024.106916","url":null,"abstract":"<div><p>The pigeonpea cyst nematode (PCN) <em>Heterodera cajani</em> Koshy infects black gram (<em>Vigna mungo</em> L.), causing significant yield losses. However, there is a lack of systematic information on PCN pathogenicity, as well as quantitative and qualitative yield losses in black gram under various inoculum levels and soil conditions. Therefore, we have assessed the threshold inoculum level(s), estimated the yield and protein losses caused by PCN, and evaluated eco-friendly management option(s) with botanicals (neem cake, neem seed powder) and a microbial agent (<em>Trichoderma harzianum</em>). The results revealed a gradual and significant decline in crop growth parameters as the inoculum levels increased from 0 to 3000 juveniles (J2s)(2 kg soils). The severity of PCN infestation was notably higher in alluvial soils compared to lighter soils, exhibiting higher cyst counts (+63%) in plant roots. The threshold inoculum level(s) causing a 25% reduction in various agronomic parameters was significantly lower in alluvial soil(176–1262 J2s; mean = 921) compared to light soil (720–1444 J2s, mean = 1308), indicating that alluvial soil conditions favored increased PCN infestation over light soils, leading to more substantial growth inhibition. Strong positive correlations were found between initial inoculum levels and final populations of PCN. Inoculum levels ranging from 90 to 120 thousand J2s (representing 45–60 J2s per 100 cc soils) resulted in yield losses of 26–78% (<em>p</em> &lt; 0.001). Additionally, there was a corresponding decrease in grain protein content by 9–22% (<em>p</em> &lt; 0.01), subsequently reducing protein productivity by 11–83% (<em>p</em> &lt; 0.001). In the PCN management experiment, among the different bio-organic components, neem cake at 1.0 t ha<sup>−1</sup> exhibited the highest efficacy against PCN at crop harvest stage, leading to significant improvements in both dry shoot weight (4.3 g) and dry root weight (1.0 g)/plant compared to the inoculated check. Also, neem seed powder (at 0.1 t ha<sup>−1</sup>) and <em>T</em>. <em>harzianum</em> + farmyard manure (1 kg in 100 kg farmyard manure ha<sup>−1</sup>) showed increased effectiveness against the nematode. This study emphasizes the substantial influence of nematode infection on crop performance, particularly in alluvial soils, resulting in significant losses in both yield and protein content. Neem cake emerges as a promising eco-friendly management for managing the PCN in black gram.</p></div>","PeriodicalId":10785,"journal":{"name":"Crop Protection","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new host record of Alternaria argyroxiphii on Upland cotton (Gossypium hirsutum) 陆地棉(Gossypium hirsutum)上 Alternaria argyroxiphii 的新寄主记录
IF 2.5 2区 农林科学
Crop Protection Pub Date : 2024-08-22 DOI: 10.1016/j.cropro.2024.106907
{"title":"A new host record of Alternaria argyroxiphii on Upland cotton (Gossypium hirsutum)","authors":"","doi":"10.1016/j.cropro.2024.106907","DOIUrl":"10.1016/j.cropro.2024.106907","url":null,"abstract":"<div><p>For the first time, we isolated and identified <em>Alternaria argyroxiphii</em> on Upland cotton (<em>Gossypium hirsutum</em>) in Australia and elsewhere. A single-spored <em>A. argyroxiphii</em> isolate was obtained from diseased cotton leaves that exhibited small circular to enlarged and coalesced irregular necroses in the 2021–2022 cropping season in northwest New South Wales, Australia. We identified <em>A. argyroxiphii</em> based on its large conidia with filiform beaks and sequences of the internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and calmodulin (CAL). These multigene sequences of the cotton-<em>A. argyroxiphii</em> were 100% identical to those of the type <em>A. argyroxiphii</em> isolate CBS 117222; thus, confirming the identity. On two-true-leaf cotton seedlings, <em>A. argyroxiphii</em> was able to incite necrotic symptoms resembling those observed in the field, and was reisolated and re-identified, thus, fulfilling Koch's postulates. This is the first record of <em>A. argyroxiphii</em> on Upland cotton.</p></div>","PeriodicalId":10785,"journal":{"name":"Crop Protection","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142048789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated effects of crop rotation and different herbicide rates in maize (Zea mays L.) production in central Serbia 轮作和不同除草剂使用率对塞尔维亚中部玉米生产的综合影响
IF 2.5 2区 农林科学
Crop Protection Pub Date : 2024-08-22 DOI: 10.1016/j.cropro.2024.106913
{"title":"Integrated effects of crop rotation and different herbicide rates in maize (Zea mays L.) production in central Serbia","authors":"","doi":"10.1016/j.cropro.2024.106913","DOIUrl":"10.1016/j.cropro.2024.106913","url":null,"abstract":"<div><p>Successful maize (<em>Zea mays</em> L.) cultivation is largely reliable by weed interference. Among weeds, annual species are usually dominant, whereas less prevalent perennials can be challenging to control, too. Driven by profitability, maize is often cultivated continuously using the same management practices over time, resulting in increased weed infestations, particularly perennials. However, crop rotation might reduce the abundance of weed species, lower herbicide impact on the environment, delaying herbicide resistance occurrence in weeds and thus contribute to sustainable maize production,. The aim of this study was to explore the impact of continuous maize cropping (Maize-CC) and a three-crop rotation, maize–winter wheat–soybean (Maize-WW-S), in combination with three weed management treatments: 1) application of a pre-emergence herbicide mixture of acetochlor/S-metolachlor + isoxaflutole at the full label rate, 2) at ½ of full label rate, and 3) an the untreated control, over a 12-year period. The trial was initiated in 2009, and maize was grown in both cropping systems, Maize-CC and Maize-WW-S, in 2012, 2015, 2018, and in 2021. Total weed density, fresh biomass of all annual and perennial weed species and total dry biomass of all weed species was measured four weeks after herbicide application. Maize leaf area index (LAI) was measured at the anthesis, whereas grain yield was measured at the end of the growing cycle. Weed species diversity, number of individuals, weed fresh and dry biomass, were significantly lower with the combination of Maize-WW-S and the herbicide treatments. Grain yield was significantly and negatively correlated with the fresh weight of annual weeds in Maize-CC and was higher in both herbicide treatments, especially in Maize-WW-S. There was no significant difference between pre-emergence herbicide full labelled rate and ½ of the labelled rate in reducing the total fresh weed biomass in Maize-CC (66.3% and 65.9%, respectively) and Maize-WW-S (92.1% and 85.8%, respectively). Thus, the importance of the combined employment of rotation and chemical measures in maize production was confirmed and could be adopted for long-term weed management without compromising yields.</p></div>","PeriodicalId":10785,"journal":{"name":"Crop Protection","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0261219424003417/pdfft?md5=25ccee43fe1eacc0762a0e67c928088e&pid=1-s2.0-S0261219424003417-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Landscape and insecticide use affecting the Leucoptera coffeella infestation and the natural parasitism spatiotemporal distribution in brazilian coffee agroecosystems 景观和杀虫剂使用对巴西咖啡农业生态系统中咖啡褐飞虱侵扰和自然寄生虫时空分布的影响
IF 2.5 2区 农林科学
Crop Protection Pub Date : 2024-08-21 DOI: 10.1016/j.cropro.2024.106908
{"title":"Landscape and insecticide use affecting the Leucoptera coffeella infestation and the natural parasitism spatiotemporal distribution in brazilian coffee agroecosystems","authors":"","doi":"10.1016/j.cropro.2024.106908","DOIUrl":"10.1016/j.cropro.2024.106908","url":null,"abstract":"<div><p>Monitoring the coffee leaf miner and natural parasitism is an important part of integrated pest management, and knowing the spatial distribution patterns of this pest can help improve sampling plans. This study aimed to determine spatial and temporal distributions of the coffee leaf miner infestation and natural parasitism in coffee plantations of different insecticide use and landscape configurations in the Planalto region, Bahia, Brazil. We monitored five coffee farms with different insecticide management practices in insecticide use and landscape features during two seasons, from December 2020 to November 2021. In each coffee farm, four regular grid plots of 30 points were established, for a total of 120 sample points per farm, that were georeferenced. Each point was a group of five coffee plants within 5 m of each other, 30 m in distance. Monthly collections of mined leaves were carried out at each sampling point to determine the <em>L. coffeella</em> infestation and natural parasitism rates. Geostatistical analysis was used to determine the spatial distribution of infestations and natural parasitism using semivariograms. Landscape metrics of each coffee plantation were surveyed in buffers ranging from 500 to 3000 m to assess their effects on population aggregation. Infestations of L. <em>coffeella</em> and natural parasitism of the pest occurred throughout the year and at varying intensities among farms. <em>Leucoptera coffeella</em> infestation and natural parasitism exhibited moderate aggregation patterns in most sampling months. The aggregation of <em>L. coffeella</em> infestations and natural parasitism were influenced by landscape and insecticide use. Forest cover, land cover use diversity, and insecticide use increased aggregation of <em>L. coffeella</em> infestations and natural parasitism, whereas edge density decreased aggregation of both. The study suggests that it may be beneficial to review the current sampling plans for the coffee leaf miner and the natural parasitism in coffee farms. This information can improve the integrated management of the pest in coffee farms and assist in decision-making regarding <em>L. coffeella</em> control strategies.</p></div>","PeriodicalId":10785,"journal":{"name":"Crop Protection","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信