Compost Science & Utilization最新文献

筛选
英文 中文
Sanitary Assurance at Biosolids Composting Facilities: Assessing the Efficiency of Temperature-Contact Time Criterion 生物固体堆肥设施的卫生保证:评估温度-接触时间标准的效率
4区 农林科学
Compost Science & Utilization Pub Date : 2019-07-03 DOI: 10.1080/1065657X.2019.1641446
Pulat Isobaev, Kristine Wichuk, D. McCartney, N. Neumann
{"title":"Sanitary Assurance at Biosolids Composting Facilities: Assessing the Efficiency of Temperature-Contact Time Criterion","authors":"Pulat Isobaev, Kristine Wichuk, D. McCartney, N. Neumann","doi":"10.1080/1065657X.2019.1641446","DOIUrl":"https://doi.org/10.1080/1065657X.2019.1641446","url":null,"abstract":"Abstract Pathogen inactivation due to temperature exposure was studied in full-scale covered aerated static piles (CASP) treating municipal biosolids. The objectives of the study were to assess the impact of the temperature contact time on pathogen inactivation and to analyze whether the gradual increase in temperature, as occurs in compost piles, trigger a viable-but-non-culturable (VBNC) state. Twenty-two temperature probes imitating random particle behavior were seeded with Escherichia coli and Salmonella and introduced into the CASP. It was found that 92% of the compost pile experienced temperatures ≥55 °C for at least three consecutive days during the first stage of composting (36 days). This number rose to 93% after the pile was turned and composted for a further 20 days. At the end of active composting, the fecal coliforms level in the compost matrix, determined by culturing methods, was <103 MPN·g−1 total solids, while Salmonella was below its detection limit of <3 MPN·4 g−1 total solids. The molecular method indicated that there were live cells which had apparently entered a VBNC state. Nonetheless, it was concluded further study is needed to assess overall risk, since other factors such as pH, toxic compounds, and microbial competition and antagonism were excluded from this particular study. In future, as the techniques presented herein are refined, they may be useful for validating different types of composting technologies for sanitation effectiveness.","PeriodicalId":10714,"journal":{"name":"Compost Science & Utilization","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1065657X.2019.1641446","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42893868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of Different Fertilizers’ Sources on Micronutrients’ Content and Sugar Quality of Sugar Beet 不同肥料来源对甜菜微量营养素含量及食糖品质的影响
4区 农林科学
Compost Science & Utilization Pub Date : 2019-07-03 DOI: 10.1080/1065657X.2019.1630337
Elahe Ahmadpoor Dehkordi, M. R. Tadayon, A. Tadayyon
{"title":"The Effect of Different Fertilizers’ Sources on Micronutrients’ Content and Sugar Quality of Sugar Beet","authors":"Elahe Ahmadpoor Dehkordi, M. R. Tadayon, A. Tadayyon","doi":"10.1080/1065657X.2019.1630337","DOIUrl":"https://doi.org/10.1080/1065657X.2019.1630337","url":null,"abstract":"Abstract In order to evaluate the effect of different fertilizers’ sources on micronutrients’ content and sugar quality of sugar beet, three fertilizers’ sources include spent mushroom compost (SMC) (29 t/ha), sheep manure (23 t/ha), chemical fertilizer including zinc sulfate (10 kg/ha), copper sulfate (10 kg/ha), iron sulfate (30 kg/ha), manganese sulfate (15 kg/ha) and no fertilizer (control) were conducted in a randomized complete block design with three replications at Research Farm of Shahrekord University in 2013. The results showed that micronutrients’ content in the root, α-amino-N sucrose percentage and sucrose yield were significantly affected by fertilizer treatments. The highest elements’ content of Fe (90.39 mg/kg), Zn (39.15 mg/kg), and Cu (18.1 mg/kg) in sugar beet root belonged to SMC treatment. Besides, SMC caused less α-amino-N accumulation in sugar beet compared with sheep manure (1.05 MEq/g). Sucrose percentage was higher in SMC treatment than the sheep manure. Likewise, sucrose percentage revealed a significant positive correlation with micronutrients of zinc, copper, and manganese in sugar beet root. Therefore, it could be concluded that using SMC increases micronutrients’ content in the root and at the same time, plays an important role in sugar quality improvement of sugar beet.","PeriodicalId":10714,"journal":{"name":"Compost Science & Utilization","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1065657X.2019.1630337","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46468869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Rice Bran Addition to Leaf Compost Can Reduce Radiocesium Concentration and Its Uptake by Crops After the Fukushima Daiichi Nuclear Power Plant Accident 福岛第一核电站事故后,水稻秸秆堆肥中添加米糠可降低作物对放射性元素的吸收
4区 农林科学
Compost Science & Utilization Pub Date : 2019-07-03 DOI: 10.1080/1065657X.2019.1630338
M. Moqbal, M. Komatsuzaki, D. J. Jayasanka
{"title":"Rice Bran Addition to Leaf Compost Can Reduce Radiocesium Concentration and Its Uptake by Crops After the Fukushima Daiichi Nuclear Power Plant Accident","authors":"M. Moqbal, M. Komatsuzaki, D. J. Jayasanka","doi":"10.1080/1065657X.2019.1630338","DOIUrl":"https://doi.org/10.1080/1065657X.2019.1630338","url":null,"abstract":"Abstract Leaf composting is an essential technique in organic farming; it improves the physicochemical properties of soil such as texture, structure, water-holding capacity, and nutrient content. However, the use of leaf compost is prohibited in the Fukushima and Ibaraki prefectures because large areas of the Fukushima and Ibaraki forests were contaminated by radiocesium (134Cs and 137Cs) after the Fukushima Daiichi nuclear power plant (FDNPP) accident. We examined the changes in radio Cs concentration and other physicochemical properties in leaf compost made from Ibaraki and Fukushima forest leaves. At the beginning of the composting process, rice bran-treated compost showed 25%–32% lower radio Cs concentration than the leaf-only compost; however, 2 years after composting, the difference in concentration between these treatments had increased to 35%–63%. Moreover, the incorporation of rice bran significantly increased the compost temperature, moisture, electrical conductivity, bulk density, and total nitrogen during the composting process. Plant uptake of radio Cs was significantly lower in rice bran-treated compost than the leaf-only compost at each level of application; furthermore, the levels of soil radio Cs showed a similar trend. Potassium application combined with leaf compost resulted in a significant reduction of radio Cs plant uptake. Our data revealed that adding rice bran to leaves positively affects radio Cs reduction in leaf compost and also reduces its uptake by plants. Our findings may improve the management of leaf composting after the FDNPP accident.","PeriodicalId":10714,"journal":{"name":"Compost Science & Utilization","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1065657X.2019.1630338","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46866991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Different Substrate Ratios on the Growth and Physiology of Sequoia sempervirens Container Seedlings 不同基质配比对红杉容器苗生长和生理的影响
4区 农林科学
Compost Science & Utilization Pub Date : 2019-07-03 DOI: 10.1080/1065657X.2019.1630340
G. Meng, Dongxing Luan, Z. Tai, Jifeng Deng, Jianqiu Han, Yumei Zhou
{"title":"Effects of Different Substrate Ratios on the Growth and Physiology of Sequoia sempervirens Container Seedlings","authors":"G. Meng, Dongxing Luan, Z. Tai, Jifeng Deng, Jianqiu Han, Yumei Zhou","doi":"10.1080/1065657X.2019.1630340","DOIUrl":"https://doi.org/10.1080/1065657X.2019.1630340","url":null,"abstract":"Abstract Container technology can effectively control soil environment and nutrient status to obtain the optimal plant growth condition. Peat, green waste compost (GWC), soil and perlite were used as substrate materials to study the effects of different substrate ratios on growth and physiology of 1.5-year-old Sequoia sempervirens container seedlings. The optimal substrate ratio of S. sempervirens container seedlings was obtained by L9 (34) orthogonal design and was finally evaluated by principal component analysis. The volume ratio of peat: GWC: soil: perlite of 4: 1.5: 1: 2 was the best substrate ratio for S. sempervirens across all parameters, whose porosity, bulk density (BD) and gas-water ratio (GWR) were within the ideal ranges. The concentrations of total nitrogen (TN) of 1.40% and total phosphorus (TP) of 0.13% were the highest among the nine different substrates. The total potassium (TK) and electrical conductivity (EC) were 0.13% and 0.70 ms cm−1, respectively. In addition, the plant height and ground diameter growing in the substrate were increased by 28% and 39% compared to their respective initial values. The content of peat and GCW had significant effects on growth (p < 0.01). The GWR in T2 (peat: GWC: soil: perlite = 6: 1: 0.5: 2) and T6 (peat: GWC: soil: perlite = 4: 0.5: 0.5: 1) are not suitable for S. sempervirens container seedlings. The PCA ranking of the 9 groups of substrates is: T8 > T1 > T4 > T3 > T2 > T5 > T7 > T9 > T6. The combination of peat, GWC, soil and perlite in an appropriate ratio could provide a good environment for S. sempervirens container seedlings.","PeriodicalId":10714,"journal":{"name":"Compost Science & Utilization","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1065657X.2019.1630340","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41507350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Application of Neutron-Gamma Analysis for Determining Compost C/N Ratio 中子- γ分析在堆肥碳氮比测定中的应用
4区 农林科学
Compost Science & Utilization Pub Date : 2019-07-03 DOI: 10.1080/1065657X.2019.1630339
G. Yakubova, A. Kavetskiy, S. Prior, H. Allen Torbert
{"title":"Application of Neutron-Gamma Analysis for Determining Compost C/N Ratio","authors":"G. Yakubova, A. Kavetskiy, S. Prior, H. Allen Torbert","doi":"10.1080/1065657X.2019.1630339","DOIUrl":"https://doi.org/10.1080/1065657X.2019.1630339","url":null,"abstract":"Abstract The possible application of Pulsed Fast/Thermal Neutron Analysis (PFTNA) for determining the carbon-to-nitrogen ratio (C/N) of compost will be discussed. This analysis method has several advantages over traditional chemical analysis, including that it is a nondestructive in situ method that does not require extensive sample collection and it analyzes much larger volumes of material (∼1 m3) than traditional chemical analysis (∼1 cm3). The amount of carbon can be determined by irradiating compost with neutrons and measuring the gamma ray peak at an energy of 4.44 MeV that appears due to inelastic scattering. Nitrogen can be determined by measuring the gamma ray peak at 10.83 MeV that appears due to thermal neutron capture. For C/N measurements, a calibration line that relates the C/N mass ratio to the carbon/nitrogen gamma peak ratio should first be constructed; our calibration line was constructed using carbon–ammonium nitrate mixtures. PFTNA measurements were then used to determine carbon and nitrogen peak values in order to utilize the calibration line for calculating the C/N mass ratio. The workability of this methodology has been demonstrated in laboratory experiments. The applicability of PFTNA for compost C/N ratio determinations was evaluated with Monte Carlo computer simulations of neutron propagation in large compost volumes (Geant4 toolkit) and experimental measurements of real compost (volume 1.3 m3). Data from computer simulations and experiments demonstrated that the PFTNA method is fully applicable for determining the C/N ratio in compost material up to values of 25 and even greater.","PeriodicalId":10714,"journal":{"name":"Compost Science & Utilization","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1065657X.2019.1630339","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45996874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Impact of Ammonia During Composting on Calonectria pseudonaviculata and C. henricotiae, Causal Agents of Boxwood Blight 堆肥过程中氨对黄杨枯萎病病原菌绿僵菌和白僵菌的影响
4区 农林科学
Compost Science & Utilization Pub Date : 2019-04-03 DOI: 10.1080/1065657X.2019.1586595
R. Harvey, N. Shishkoff, J. Pecchia, D. Davis
{"title":"Impact of Ammonia During Composting on Calonectria pseudonaviculata and C. henricotiae, Causal Agents of Boxwood Blight","authors":"R. Harvey, N. Shishkoff, J. Pecchia, D. Davis","doi":"10.1080/1065657X.2019.1586595","DOIUrl":"https://doi.org/10.1080/1065657X.2019.1586595","url":null,"abstract":"Abstract Boxwood (Buxus spp.) blight is a devastating disease caused by the Ascomycete fungus Calonectria pseudonaviculata in the U.S. and Europe. A second Calonectria species, C. henricotiae, is also pathogenic on boxwood in Europe, but is not present in the U.S. where it is classified as a quarantine pathogen. Composting can eradicate various plant pathogens and high temperature is likely the most important factor influencing pathogen eradication. We previously reported that C. pseudonaviculata microsclerotia survived exposure to 40 °C in an incubator without compost, whereas exposure to the same temperature and time, but with compost added, greatly decreased survival. That is, the decrease in Calonectria growth and survival in compost was greater than could be accounted for by high temperature alone. We hypothesized that the enhanced decrease in Calonectria growth and survival might be due to ammonia, a fungitoxic gas produced during composting. In this laboratory study, we determined that ammonia within agar in Petri plates reduced radial growth of both C. pseudonaviculata and C. henricotiae. In studies with C. pseudonaviculata, gaseous ammonia reduced microsclerotia survival. Our findings suggest that composting dead or dying blighted boxwoods in the presence of ammonia could reduce dissemination of both Calonectria species from blighted to healthy boxwoods.","PeriodicalId":10714,"journal":{"name":"Compost Science & Utilization","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1065657X.2019.1586595","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44072082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effect of Woody Peat as an Additive on Maturity and Gaseous Emissions During Pig Manure Composting 木质泥炭添加剂对猪粪堆肥过程中成熟度和气体排放的影响
4区 农林科学
Compost Science & Utilization Pub Date : 2019-04-03 DOI: 10.1080/1065657X.2018.1507850
Jing Yuan, Difang Zhang, Longlong Du, Fan Yang, Guoxue Li, Yuan-pei Luo
{"title":"Effect of Woody Peat as an Additive on Maturity and Gaseous Emissions During Pig Manure Composting","authors":"Jing Yuan, Difang Zhang, Longlong Du, Fan Yang, Guoxue Li, Yuan-pei Luo","doi":"10.1080/1065657X.2018.1507850","DOIUrl":"https://doi.org/10.1080/1065657X.2018.1507850","url":null,"abstract":"Abstract Woody peat was used as an additive to compost with pig manure in 1.2 m3 composting reactors under aerobic conditions for a 77 days period to estimate the effect on the compost maturity and gaseous emissions (NH3, N2O, and CH4). Pig manure was also composted with cornstalks (the traditional method) as a control treatment. The results showed that both cornstalks and woody peat composts reached the required maturity standard. Composting with woody peat as a bulking agent was found to reduced NH3 emissions by 36% than the cornstalks amended treatment. Although CH4 emission increased by adding woody peat, N2O emission was considerably reduced, resulting in a slight decrease in total greenhouse gas emissions. More importantly, woody peat could reduce the losses of total carbon and total nitrogen, improve the compost quality as fertilizer.","PeriodicalId":10714,"journal":{"name":"Compost Science & Utilization","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1065657X.2018.1507850","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49363089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Measurements of Greenhouse Gas Flux from Composting Green-Waste Using Micrometeorological Mass Balance and Flow-Through Chambers 利用微气象物质平衡和流量室测量绿色废弃物堆肥温室气体通量
4区 农林科学
Compost Science & Utilization Pub Date : 2019-04-03 DOI: 10.1080/1065657X.2019.1571462
E. Kent, S. K. Bailey, J. Stephens, W. Horwath, K. Paw U
{"title":"Measurements of Greenhouse Gas Flux from Composting Green-Waste Using Micrometeorological Mass Balance and Flow-Through Chambers","authors":"E. Kent, S. K. Bailey, J. Stephens, W. Horwath, K. Paw U","doi":"10.1080/1065657X.2019.1571462","DOIUrl":"https://doi.org/10.1080/1065657X.2019.1571462","url":null,"abstract":"Abstract Greenhouse gases (GHGs) are produced during the composting process, but few studies have measured emissions from a full-scale windrow of composting green-waste. This is important for evaluating composting as a waste management option and for understanding how changes to current composting management practices could help reduce emissions. This study uses micrometeorological mass balance (MMB) and open flow-through chamber techniques to measure emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from a windrow of composting green-waste in Northern California. The MMB technique yielded mean upwind–downwind concentration differences over the study period that showed sourcing of all three GHGs. CO2 showed a stronger signal than CH4 and N2O. A strong diel pattern was found in the concentration differences at lower levels and fluxes of CO2, with substantial noise likely obscuring any possible daily patterns for CH4 and N2O. Fluxes normalized by the time since the previous turn event revealed an initial rapid rise in CO2 concentration differences (at lower levels) and fluxes, peaking close to 13 h after the turn event followed by a gradual decline. The same pattern was not as clear for the other two gases but overall declines in concentration differences and fluxes were apparent with increasing time since the previous turn event. Substantial differences between MMB and chamber calculated fluxes were found, due to both differences in the techniques as well as sampling frequency.","PeriodicalId":10714,"journal":{"name":"Compost Science & Utilization","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1065657X.2019.1571462","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47993792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Composting of Cornstalks Used as Filtering Materials for the Pretreatment of Anaerobically Digested Centrate 玉米秸秆堆肥用作厌氧消化中心酸盐预处理的过滤材料
4区 农林科学
Compost Science & Utilization Pub Date : 2019-04-03 DOI: 10.1080/1065657X.2019.1571460
Longlong Du, Zhiye Zhang, Guoxue Li, Qiaoping Sun, Bangxi Zhang
{"title":"Composting of Cornstalks Used as Filtering Materials for the Pretreatment of Anaerobically Digested Centrate","authors":"Longlong Du, Zhiye Zhang, Guoxue Li, Qiaoping Sun, Bangxi Zhang","doi":"10.1080/1065657X.2019.1571460","DOIUrl":"https://doi.org/10.1080/1065657X.2019.1571460","url":null,"abstract":"Abstract This study investigated the performance of composting cornstalks after used as the filtering materials for the pretreatment of anaerobically digested manure centrate. Results show that cornstalks could effectively remove suspended solids and organic matter in digested centrate. Direct composting of the used cornstalks could be achieved. The composting temperature increased rapidly and maintained at the thermophilic phase for more than 10 days. During 28 days of composting, the used cornstalks could be mature as indicated by the matrix pH of 7.37, electrical conductivity of 1.13 mS/cm, and germination index of higher than 100%. During composting, the carbon/nitrogen ratio of the used cornstalks decreased from 16.81 to 13.62. Moreover, cellulose in the used cornstalks was degraded by approximately 35.4% during composting.","PeriodicalId":10714,"journal":{"name":"Compost Science & Utilization","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1065657X.2019.1571460","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44153857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Phosphate Amendments to Compost for Improving P Bio-Availability 堆肥中添加磷酸盐提高磷的生物利用度
4区 农林科学
Compost Science & Utilization Pub Date : 2019-04-03 DOI: 10.1080/1065657X.2019.1571461
Y. Redel, P. M. Nkebiwe, R. Schulz, T. Müller
{"title":"Phosphate Amendments to Compost for Improving P Bio-Availability","authors":"Y. Redel, P. M. Nkebiwe, R. Schulz, T. Müller","doi":"10.1080/1065657X.2019.1571461","DOIUrl":"https://doi.org/10.1080/1065657X.2019.1571461","url":null,"abstract":"Abstract This study was conducted to investigate changes in P-fractions, bio-available P (CAL-P), citric acid extractable P, acid phosphatase activity and microbial biomass C and N during incubation of mature biogenic compost (MBC), immature biogenic compost (IBC) or immature sheep manure compost (ISC) not amended with P or amended with rock phosphate (RP, 7.6% P) or triple-superphosphate (TSP, 19.5% P). Incubation was performed at 20 °C in darkness under aerobic conditions. Samples were collected for laboratory analysis at the start of incubation (D-0) and after one, six and 26 days during incubation (D-1, D-6, D-26). Addition of soluble P fertilizer (TSP) led to a threefold increase in all P fractions in comparison to compost without TSP; even a “priming effect” could be observed, promoting conversion of non-labile to labile P. Moreover, addition of TSP lowered biological activity, especially acid phosphatase activity (P-ase), due to already high concentrations of readily available P. In general, P fractions (bicarbonate extractable Pi (NaHCO3-Pi) and bicarbonate extractable Po (NaHCO3-Po) and sodium hydroxide extractable Po (NaOH-Po)) increased during incubation until day 6 at the expense of NaOH-Pi fraction, which decreased. Generally, RP-derived P showed little or no effect on P fractions during the entire incubation period and only led to slightly increased CAL-P and Citric-acid-P levels. Fertilizer effects on labile P fractions were most enhanced with ISC. IBC enhanced microbial growth and P-ase, thereby enhancing conversion of labile into moderate labile NaOH-Po.","PeriodicalId":10714,"journal":{"name":"Compost Science & Utilization","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1065657X.2019.1571461","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47843802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信