{"title":"Decomposition of a complex motor skill with precise error feedback and intensive training breaks expertise ceiling.","authors":"Yudai Kimoto, Masato Hirano, Shinichi Furuya","doi":"10.1038/s42003-025-07562-6","DOIUrl":"10.1038/s42003-025-07562-6","url":null,"abstract":"<p><p>Complex motor skills involve intricate sequences of movements that require precise temporal coordination across multiple body parts, posing challenges to mastery based on perceived error or reward. One approach that has been widely used is to decompose such skills into simpler, constituent movement elements during the learning process, thereby aligning the task complexity with the learners' capacity for accurate execution. Despite common belief and prevalent adoption, the effectiveness of this method remains elusive. Here we addressed this issue by decomposing a sequence of precisely timed coordination of movements across multiple fingers into individual constituent elements separately during piano practice. The results demonstrated that the decomposition training enhanced the accuracy of the original motor skill, a benefit not achieved through mere repetition of movements alone, specifically when skilled pianists received explicit visual feedback on timing error in the order of milliseconds during training. During the training, the patterns of multi-finger movements changed significantly, suggesting exploration of movements to refine the skill. By contrast, neither unskilled pianists who underwent the same training nor skilled pianists who performed the decomposition training without receiving visual feedback on the error showed improved skill through training. These findings offer novel evidences suggesting that decomposing a complex motor skill, coupled with receiving feedback on subtle movement error during training, further enhances motor expertise of skilled individuals by facilitating exploratory refinement of movements.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"118"},"PeriodicalIF":5.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761348/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143037350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shannon Colleen Lynch, Edeli Reyes-Gonzalez, Emily L Bossard, Karen S Alarcon, Natalie L R Love, Allan D Hollander, Beatriz E Nobua-Behrmann, Gregory S Gilbert
{"title":"A phylogenetic epidemiology approach to predicting the establishment of multi-host plant pests.","authors":"Shannon Colleen Lynch, Edeli Reyes-Gonzalez, Emily L Bossard, Karen S Alarcon, Natalie L R Love, Allan D Hollander, Beatriz E Nobua-Behrmann, Gregory S Gilbert","doi":"10.1038/s42003-025-07540-y","DOIUrl":"10.1038/s42003-025-07540-y","url":null,"abstract":"<p><p>Forecasting emergent pest spread is paramount to mitigating their impacts. For host-specialized pests, epidemiological models of spread through a single host population are well developed. However, most pests attack multiple host species; the challenge is predicting which communities are most vulnerable to infestation. Here, we develop a phylogenetically-informed approach to predict establishment of emergent multi-host pests across heterogeneous landscapes. We model a beetle-pathogen symbiotic complex on trees, introduced from Southeast Asia to California. The phyloEpi model for likelihood of establishment was predicted from the phylogenetic composition of woody species in the invaded community and the influence of temperature on beetle reproduction. Plant communities dominated by close relatives of known epidemiologically critical hosts were four times more likely to become infested than communities with more distantly related species. Where microclimate favored beetle reproduction, pest establishment was greater than expected based only on species composition. We applied this phyloEpi model to predict infestation risk in California using weather data and complete tree inventories from 9262 1-km<sup>2</sup> grids in 170 cities. Regions in the state predicted with low likelihood of infestation were confirmed by independent monitoring. Analysts can adapt these phylogenetic ecology tools to predict spread of any multi-host pest in novel habitats.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"117"},"PeriodicalIF":5.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760915/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143037414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingpeng Zhang, Aleksei Traspov, Jiawen Yang, Min Zheng, Veronika R Kharzinova, Huashui Ai, Natalia A Zinovieva, Lusheng Huang
{"title":"Genomic and transcriptomic insights into vitamin A-induced thermogenesis and gene reuse as a cold adaptation strategy in wild boars.","authors":"Mingpeng Zhang, Aleksei Traspov, Jiawen Yang, Min Zheng, Veronika R Kharzinova, Huashui Ai, Natalia A Zinovieva, Lusheng Huang","doi":"10.1038/s42003-025-07536-8","DOIUrl":"10.1038/s42003-025-07536-8","url":null,"abstract":"<p><p>Wild boars inhabit diverse climates, including frigid regions like Siberia, but their migration history and cold adaptation mechanisms into high latitudes remain poorly understood. We constructed the most comprehensive wild boar whole-genome variant dataset to date, comprising 124 samples from tropical to frigid zones, among which 47 Russian, 8 South Chinese and 3 Vietnamese wild boars were newly supplemented. We also gathered 75 high-quality RNA-seq datasets from 10 tissues of 6 wild boars from Russia and 6 from southern China. Demographic analysis revealed the appearance of Russian wild boars in Far East of Asia (RUA) and Europe (RUE) after the last glacial maximum till ~ 10 thousand years ago. Recent gene flow (<100 years) from RUA to RUE reflects human-mediated introductions. Cold-region wild boars exhibit strong selection signatures indicative of genetic adaptation to cold climates. Further pathway and transcriptomic analyses reveal a novel cold resistance mechanism centered on enhanced vitamin A metabolism and catalysis, involving the reuse of UGT2B31 and rhythm regulation by ANGPTL8, RLN3 and ZBTB20. This may compensate for the pig's lack of brown fat/UCP1 thermogenesis. These findings provide new insights into the molecular basis of cold adaptation and improve our understanding of Eurasian wild boar migration history.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"116"},"PeriodicalIF":5.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759952/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143037445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashutosh K Pathak, Shannon Quek, Ritu Sharma, Justine C Shiau, Matthew B Thomas, Grant L Hughes, Courtney C Murdock
{"title":"Thermal variation influences the transcriptome of the major malaria vector Anopheles stephensi.","authors":"Ashutosh K Pathak, Shannon Quek, Ritu Sharma, Justine C Shiau, Matthew B Thomas, Grant L Hughes, Courtney C Murdock","doi":"10.1038/s42003-025-07477-2","DOIUrl":"10.1038/s42003-025-07477-2","url":null,"abstract":"<p><p>The distribution and abundance of ectothermic mosquitoes are strongly affected by temperature, but mechanisms remain unexplored. We describe the effect of temperature on the transcriptome of Anopheles stephensi, an invasive vector of human malaria. Adult females were maintained across a range of mean temperatures (20 °C, 24 °C and 28 °C), with daily fluctuations of +5 °C and -4 °C at each mean temperature. Transcriptomes were described up to 19 days post-blood meal. Of the >3100 differentially expressed genes, we observed shared temporal expression profiles across all temperatures, suggesting their indispensability to mosquito life history. Tolerance to 20 and 28 ( + 5°C/-4°C) was associated with larger and more diverse transcriptomes compared to 24 ( + 5 °C/-4 °C). Finally, we identified two distinct trends in gene expression in response to blood meal ingestion, oxidative stress, and reproduction. Our work has implications for mosquitoes' response to thermal variation, mosquito immune-physiology, mosquito-malaria interactions and the development of vector control tools.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"112"},"PeriodicalIF":5.2,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joy Collombat, Manfredo Quadroni, Véronique Douet, Rosa Pipitone, Fiamma Longoni, Felix Kessler
{"title":"Arabidopsis conditional photosynthesis mutants abc1k1 and var2 accumulate partially processed thylakoid preproteins and are defective in chloroplast biogenesis.","authors":"Joy Collombat, Manfredo Quadroni, Véronique Douet, Rosa Pipitone, Fiamma Longoni, Felix Kessler","doi":"10.1038/s42003-025-07497-y","DOIUrl":"https://doi.org/10.1038/s42003-025-07497-y","url":null,"abstract":"<p><p>Photosynthetic activity is established during chloroplast biogenesis. In this study we used 680 nm red light to overexcite Photosystem II and disrupt photosynthesis in two conditional mutants (var2 and abc1k1) which reversibly arrested chloroplast biogenesis. During biogenesis, chloroplasts import most proteins associated with photosynthesis. Some of these must be inserted in or transported across the thylakoid membrane into the thylakoid lumen. They are synthesized in the cytoplasm with cleavable targeting sequences and the lumenal ones have bi-partite targeting sequences (first for the chloroplast envelope, second for the thylakoid membrane). Cleavage of these peptides is required to establish photosynthesis and a critical step of chloroplast biogenesis. We employ a combination of Western blotting and mass spectrometry to analyze proteins in var2 and abc1k1. Under red light, var2 and abc1k1 accumulated incompletely cleaved processing intermediates of thylakoid proteins. These findings correlated with colorless cotyledons, and defects in both chloroplast morphology and photosynthesis. Together the results provide evidence for the requirement of active photosynthesis for processing of photosystem-associated thylakoid proteins and concomitantly progression of chloroplast biogenesis.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"111"},"PeriodicalIF":5.2,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754785/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143058335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Single-cell RNA-seq data augmentation using generative Fourier transformer.","authors":"Nima Nouri","doi":"10.1038/s42003-025-07552-8","DOIUrl":"10.1038/s42003-025-07552-8","url":null,"abstract":"<p><p>Single-cell RNA sequencing (scRNA-seq) provides a powerful tool for dissecting cellular complexity and heterogeneity. However, its full potential to achieve statistically reliable conclusions is often constrained by the limited number of cells profiled, particularly in studies of rare diseases, specialized tissues, and uncommon cell types. Deep learning-based generative models (GMs) designed to address data scarcity often face similar limitations due to their reliance on pre-training or fine-tuning, inadvertently perpetuating a cycle of data inadequacy. To overcome this obstacle, we introduce scGFT (single-cell Generative Fourier Transformer), a train-free, cell-centric GM adept at synthesizing single cells that exhibit natural gene expression profiles present within authentic datasets. Using both simulated and experimental data, we demonstrate the mathematical rigor of scGFT and validate its ability to synthesize cells that preserve the intrinsic characteristics delineated in scRNA-seq data. Moreover, comparisons of scGFT with leading neural network-based GMs highlight its superior performance, driven by its analytical mechanism. By streamlining single-cell data augmentation, scGFT offers a scalable solution to mitigate data scarcity in cell-targeted research.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"113"},"PeriodicalIF":5.2,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754799/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The timing of speech-to-speech synchronization is governed by the P-center.","authors":"Tamara Rathcke","doi":"10.1038/s42003-025-07544-8","DOIUrl":"10.1038/s42003-025-07544-8","url":null,"abstract":"","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"107"},"PeriodicalIF":5.2,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754750/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Illuminating understudied kinases: a generalizable biosensor development method applied to protein kinase N.","authors":"Julius Bogomolovas, Ju Chen","doi":"10.1038/s42003-025-07510-4","DOIUrl":"10.1038/s42003-025-07510-4","url":null,"abstract":"<p><p>Protein kinases play crucial roles in regulating cellular processes, making real-time visualization of their activity essential for understanding signaling dynamics. While genetically encoded fluorescent biosensors have emerged as powerful tools for studying kinase activity, their development for many kinases remains challenging due to the lack of suitable substrate peptides. Here, we present a novel approach for identifying peptide substrates and demonstrate its effectiveness by developing a biosensor for Protein Kinase N (PKN) activity. Our method identified a new PKN substrate peptide that we optimized for use in a fluorescent biosensor design. The resulting biosensor shows specificity for PKN family kinases and can detect both overexpressed and endogenous PKN activity in live cells. Importantly, our biosensor revealed sustained basal PKN2 activity at the plasma membrane, identifying it as a PKN2 activity hotspot. This work not only provides a valuable tool for studying PKN signaling but also demonstrates a promising strategy for developing biosensors for other understudied kinases, potentially expanding our ability to monitor kinase activity across the human kinome.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"109"},"PeriodicalIF":5.2,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754634/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neural processing of naturalistic audiovisual events in space and time.","authors":"Yu Hu, Yalda Mohsenzadeh","doi":"10.1038/s42003-024-07434-5","DOIUrl":"10.1038/s42003-024-07434-5","url":null,"abstract":"<p><p>Our brain seamlessly integrates distinct sensory information to form a coherent percept. However, when real-world audiovisual events are perceived, the specific brain regions and timings for processing different levels of information remain less investigated. To address that, we curated naturalistic videos and recorded functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) data when participants viewed videos with accompanying sounds. Our findings reveal early asymmetrical cross-modal interaction, with acoustic information represented in both early visual and auditory regions, while visual information only identified in visual cortices. The visual and auditory features were processed with similar onset but different temporal dynamics. High-level categorical and semantic information emerged in multisensory association areas later in time, indicating late cross-modal integration and its distinct role in converging conceptual information. Comparing neural representations to a two-branch deep neural network model highlighted the necessity of early cross-modal connections to build a biologically plausible model of audiovisual perception. With EEG-fMRI fusion, we provided a spatiotemporally resolved account of neural activity during the processing of naturalistic audiovisual stimuli.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"110"},"PeriodicalIF":5.2,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754444/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Small molecules and heat treatments reverse vernalization via epigenetic modification in Arabidopsis.","authors":"Nana Otsuka, Ryoya Yamaguchi, Hikaru Sawa, Naoya Kadofusa, Nanako Kato, Yasuyuki Nomura, Nobutoshi Yamaguchi, Atsushi J Nagano, Ayato Sato, Makoto Shirakawa, Toshiro Ito","doi":"10.1038/s42003-025-07553-7","DOIUrl":"10.1038/s42003-025-07553-7","url":null,"abstract":"<p><p>Monocarpic plants flower only once and then produce seeds. Many monocarpic plants require a cold treatment known as vernalization before they flower. This requirement delays flowering until the plant senses warm temperatures in the spring. Exposure to high temperatures following vernalization causes devernalization, which cancels the vernalized state, inhibiting flowering and promoting vegetative growth. In this study, we screened over 16,000 chemical compounds and identified five small molecules (devernalizers; DVRs) that induce devernalization in Arabidopsis thaliana at room temperature without requiring a high-temperature treatment. Treatment with DVRs reactivated the expression of FLOWERING LOCUS C (FLC), a master repressor of flowering, by reducing the deposition of repressive histone modifications, thereby delaying flowering time. Three of the DVRs identified shared two structures: a hydantoin-like region and a spiro-like carbon. Treatment with DVR06, which has a simple chemical structure containing these domains, delayed flowering time and reduced the deposition of repressive histone modifications at FLC. RNA-seq and ChIP-seq analyses revealed both shared and specific transcriptomic and epigenetic effects between DVR06- and heat-induced devernalization. Overall, our extensive chemical screening indicated that hydantoin and spiro are key chemical signatures that reduce repressive histone modifications and promote devernalization in plants.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"108"},"PeriodicalIF":5.2,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754793/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}