深度学习语言神经解码的进展、挑战和未来。

IF 5.1 1区 生物学 Q1 BIOLOGY
Yu Wang, Heyang Liu, Yuhao Wang, Chuan Xuan, Yixuan Hou, Sheng Feng, Hongcheng Liu, Yusheng Liao, Yanfeng Wang
{"title":"深度学习语言神经解码的进展、挑战和未来。","authors":"Yu Wang, Heyang Liu, Yuhao Wang, Chuan Xuan, Yixuan Hou, Sheng Feng, Hongcheng Liu, Yusheng Liao, Yanfeng Wang","doi":"10.1038/s42003-025-08511-z","DOIUrl":null,"url":null,"abstract":"<p><p>Language is the primary medium through which humans achieve information transfer and exchange. It enables the conveyance of ideas, concepts, and messages, thereby playing an indispensable role in social interaction and knowledge dissemination. Linguistic neural decoding aims to obtain outstanding language information from the evoked human brain during information interaction of both textual and spoken formats. In this work, we present a taxonomy of recent neural decoding progress, focusing on deep learning architectures and strategies, especially those implementing large language models (LLMs) for their powerful information understanding, processing, and generation capacity. We conclude with a concise observation of the challenges and potential future directions. This article aims to provide brain scientists and deep learning researchers with an overarching viewpoint of the significant correlations observed in the human brain during language perception and production from a methodological perspective, and thus facilitate their further investigation.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"1350"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12460843/pdf/","citationCount":"0","resultStr":"{\"title\":\"Progress, challenges and future of linguistic neural decoding with deep learning.\",\"authors\":\"Yu Wang, Heyang Liu, Yuhao Wang, Chuan Xuan, Yixuan Hou, Sheng Feng, Hongcheng Liu, Yusheng Liao, Yanfeng Wang\",\"doi\":\"10.1038/s42003-025-08511-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Language is the primary medium through which humans achieve information transfer and exchange. It enables the conveyance of ideas, concepts, and messages, thereby playing an indispensable role in social interaction and knowledge dissemination. Linguistic neural decoding aims to obtain outstanding language information from the evoked human brain during information interaction of both textual and spoken formats. In this work, we present a taxonomy of recent neural decoding progress, focusing on deep learning architectures and strategies, especially those implementing large language models (LLMs) for their powerful information understanding, processing, and generation capacity. We conclude with a concise observation of the challenges and potential future directions. This article aims to provide brain scientists and deep learning researchers with an overarching viewpoint of the significant correlations observed in the human brain during language perception and production from a methodological perspective, and thus facilitate their further investigation.</p>\",\"PeriodicalId\":10552,\"journal\":{\"name\":\"Communications Biology\",\"volume\":\"8 1\",\"pages\":\"1350\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12460843/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s42003-025-08511-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-08511-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

语言是人类实现信息传递和交换的主要媒介。它可以传递思想、概念和信息,从而在社会交往和知识传播中发挥不可或缺的作用。语言神经解码的目的是在文本格式和口语格式的信息交互过程中,从被诱发的人脑中获取突出的语言信息。在这项工作中,我们提出了最近神经解码进展的分类,重点关注深度学习架构和策略,特别是那些实现大型语言模型(llm)的强大的信息理解,处理和生成能力。最后,我们对挑战和潜在的未来方向进行了简要的观察。本文旨在从方法论的角度为脑科学家和深度学习研究人员提供一个关于人类大脑在语言感知和产生过程中所观察到的显著相关性的总体观点,从而促进他们的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Progress, challenges and future of linguistic neural decoding with deep learning.

Language is the primary medium through which humans achieve information transfer and exchange. It enables the conveyance of ideas, concepts, and messages, thereby playing an indispensable role in social interaction and knowledge dissemination. Linguistic neural decoding aims to obtain outstanding language information from the evoked human brain during information interaction of both textual and spoken formats. In this work, we present a taxonomy of recent neural decoding progress, focusing on deep learning architectures and strategies, especially those implementing large language models (LLMs) for their powerful information understanding, processing, and generation capacity. We conclude with a concise observation of the challenges and potential future directions. This article aims to provide brain scientists and deep learning researchers with an overarching viewpoint of the significant correlations observed in the human brain during language perception and production from a methodological perspective, and thus facilitate their further investigation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信