Visualization of RIM-BP2's crane-like function in neuronal vesicle transport using FRET.

IF 5.1 1区 生物学 Q1 BIOLOGY
Tianyu Gao, Wang Li, Shuai Shao, Zhengyao Zhang, Na Li, Hangyu Zhang, Bo Liu
{"title":"Visualization of RIM-BP2's crane-like function in neuronal vesicle transport using FRET.","authors":"Tianyu Gao, Wang Li, Shuai Shao, Zhengyao Zhang, Na Li, Hangyu Zhang, Bo Liu","doi":"10.1038/s42003-025-08747-9","DOIUrl":null,"url":null,"abstract":"<p><p>\"The last mile\" of neuronal vesicles, from being tethered by the active zone filaments to docking at the presynaptic membrane, remains unclear, which limits the deep understanding of synaptic transmission and related physiological changes. Here, we develop two molecular biosensors (BKTS and RKTS) based on fluorescence resonance energy transfer technology according to the structure of RIM-BP2. By detecting the spatial distance between the two ends of the RIM-BP2 and the presynaptic membrane separately, the spatial posture changes in RIM-BP2 are reflected to explore how vesicles are transported to the presynaptic membrane for fusion. In the process of vesicle release, RIM-BP2 in primary cortical neurons and SH-SY5Y cells rotates like a \"crane\" with amino terminal deviating from the presynaptic membrane while the carboxyl terminal becomes closer. Furthermore, disturbing the microfilament or enhancing cell membrane fluidity inhibits the rotation of RIM-BP2. Through mutating RIM-BP2, we find that actin filaments provide mechanical stress through RIM-BP2 amino terminal, thereby regulating vesicle transport and release. Our work identifies a purely mechanical pathway of vesicle transport, in which microfilaments power the RIM-BP2 to drag vesicles to the presynaptic membrane as a \"crane\" for further release.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"1362"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12462525/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-08747-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

"The last mile" of neuronal vesicles, from being tethered by the active zone filaments to docking at the presynaptic membrane, remains unclear, which limits the deep understanding of synaptic transmission and related physiological changes. Here, we develop two molecular biosensors (BKTS and RKTS) based on fluorescence resonance energy transfer technology according to the structure of RIM-BP2. By detecting the spatial distance between the two ends of the RIM-BP2 and the presynaptic membrane separately, the spatial posture changes in RIM-BP2 are reflected to explore how vesicles are transported to the presynaptic membrane for fusion. In the process of vesicle release, RIM-BP2 in primary cortical neurons and SH-SY5Y cells rotates like a "crane" with amino terminal deviating from the presynaptic membrane while the carboxyl terminal becomes closer. Furthermore, disturbing the microfilament or enhancing cell membrane fluidity inhibits the rotation of RIM-BP2. Through mutating RIM-BP2, we find that actin filaments provide mechanical stress through RIM-BP2 amino terminal, thereby regulating vesicle transport and release. Our work identifies a purely mechanical pathway of vesicle transport, in which microfilaments power the RIM-BP2 to drag vesicles to the presynaptic membrane as a "crane" for further release.

利用FRET可视化RIM-BP2在神经元囊泡运输中的鹤样功能。
神经元囊泡的“最后一英里”,从被活性区丝拴住到对接突触前膜,尚不清楚,这限制了对突触传递和相关生理变化的深入理解。本文根据RIM-BP2的结构,开发了两种基于荧光共振能量转移技术的分子生物传感器(BKTS和RKTS)。通过分别检测RIM-BP2两端与突触前膜之间的空间距离,反映RIM-BP2的空间姿态变化,探讨囊泡如何被转运到突触前膜进行融合。在囊泡释放过程中,原代皮质神经元和SH-SY5Y细胞中的RIM-BP2像“起重机”一样旋转,氨基端偏离突触前膜,羧基端靠近。此外,干扰微丝或增强细胞膜流动性会抑制RIM-BP2的旋转。通过突变RIM-BP2,我们发现肌动蛋白丝通过RIM-BP2氨基端提供机械应力,从而调节囊泡的运输和释放。我们的工作确定了一种纯机械的囊泡运输途径,其中微丝驱动RIM-BP2将囊泡拖到突触前膜,作为进一步释放的“起重机”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信