Communications Physics最新文献

筛选
英文 中文
ANAIS–112 three years data: a sensitive model independent negative test of the DAMA/LIBRA dark matter signal ANAIS-112三年数据:对DAMA/LIBRA暗物质信号进行与模型无关的灵敏负测试
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2024-10-22 DOI: 10.1038/s42005-024-01827-y
Iván Coarasa, Julio Amaré, Jaime Apilluelo, Susana Cebrián, David Cintas, Eduardo García, María Martínez, Miguel Ángel Oliván, Ysrael Ortigoza, Alfonso Ortiz de Solórzano, Tamara Pardo, Jorge Puimedón, Ana Salinas, María Luisa Sarsa, Patricia Villar
{"title":"ANAIS–112 three years data: a sensitive model independent negative test of the DAMA/LIBRA dark matter signal","authors":"Iván Coarasa, Julio Amaré, Jaime Apilluelo, Susana Cebrián, David Cintas, Eduardo García, María Martínez, Miguel Ángel Oliván, Ysrael Ortigoza, Alfonso Ortiz de Solórzano, Tamara Pardo, Jorge Puimedón, Ana Salinas, María Luisa Sarsa, Patricia Villar","doi":"10.1038/s42005-024-01827-y","DOIUrl":"10.1038/s42005-024-01827-y","url":null,"abstract":"Weakly interacting massive particles (WIMPs) are well-motivated candidates for dark matter. One signature of galactic WIMPs is the annual modulation expected in a detector’s interaction rate, which arises from Earth’s revolution around the Sun. Over two decades, the DAMA/LIBRA experiment has observed such modulation with 250 kg of NaI(Tl) scintillators, in accordance with WIMP expectations but inconsistent with the negative results of other experiments. The signal depends on the target material, so to validate or refute the DAMA result, the experiment must be replicated using the same material. This is the goal of the ANAIS–112 experiment, currently underway since August 2017 with 112.5 kg of NaI(Tl). In this work, we present a reanalysis of three years of data employing an improved analysis chain to enhance the experimental sensitivity. The results presented here are consistent with the absence of modulation and inconsistent with DAMA’s observation at nearly 3σ confidence level, with the potential to reach a 5σ level within 8 years from the beginning of the data collection. Additionally, we explore the impact of different scintillation quenching factors in the comparison between ANAIS–112 and DAMA/LIBRA. The DAMA/LIBRA experiment has observed a clear signal of dark matter for over 20 years. Although this signal contradicts the negative results of other experiments, it cannot be dismissed without replication using the same material. The authors present the negative results from the ANAIS-112 experiment, which uses the same target and shows strong tension with DAMA/LIBRA","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-12"},"PeriodicalIF":5.4,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01827-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relativistic treatment of hole alignment in noble gas atoms 惰性气体原子中空穴排列的相对论处理
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2024-10-21 DOI: 10.1038/s42005-024-01833-0
Rezvan Tahouri, Asimina Papoulia, Stefanos Carlström, Felipe Zapata, Jan Marcus Dahlström
{"title":"Relativistic treatment of hole alignment in noble gas atoms","authors":"Rezvan Tahouri, Asimina Papoulia, Stefanos Carlström, Felipe Zapata, Jan Marcus Dahlström","doi":"10.1038/s42005-024-01833-0","DOIUrl":"10.1038/s42005-024-01833-0","url":null,"abstract":"The development in attosecond physics allows for unprecedented control of atoms and molecules in the time domain. Here, ultrashort pulses are used to prepare atomic ions in specific magnetic states, which may be important for controlling charge migration in molecules. Our work fills the knowledge gap of relativistic hole alignment prepared by femtosecond and attosecond pulses. The research focuses on optimizing the central frequency and duration of pulses to exploit specific spectral features, such as Fano profiles, Cooper minima, and giant resonances. Simulations are performed using the Relativistic Time-Dependent Configuration-Interaction Singles method. Ultrafast hole alignment with large ratios (on the order of one hundred) is observed in the outer-shell hole of argon. An even larger alignment (on the order of one thousand) is observed in the inner-shell hole of xenon. In this work, the authors investigate the distribution of holes with different magnetic quantum numbers in noble gas atoms, ionized by femtosecond and attosecond pulses. They achieve high control over hole alignment by adjusting pulse parameters and exploiting specific spectral features.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01833-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamical clustering and wetting phenomena in inertial active matter 惯性活性物质中的动态聚类和润湿现象
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2024-10-21 DOI: 10.1038/s42005-024-01835-y
Lorenzo Caprini, Davide Breoni, Anton Ldov, Christian Scholz, Hartmut Löwen
{"title":"Dynamical clustering and wetting phenomena in inertial active matter","authors":"Lorenzo Caprini, Davide Breoni, Anton Ldov, Christian Scholz, Hartmut Löwen","doi":"10.1038/s42005-024-01835-y","DOIUrl":"10.1038/s42005-024-01835-y","url":null,"abstract":"Dynamical clustering is a key feature of active matter systems composed of self-propelled agents that convert environmental energy into mechanical motion. At the micron scale, where overdamped dynamics dominate, particles with opposite motility can obstruct each other’s movement, leading to transient dynamical arrest. This arrest can promote cluster formation and motility-induced phase separation. However, in macroscopic agents, where inertia plays a significant role, clustering is heavily influenced by bounce-back effects during collisions, which can impede cluster growth. Here we present an experiment based on active granular particles, in which inertia can be systematically tuned by changing the shaker frequency. As a result, a set of phenomena driven and controlled by inertia emerges. Before the suppression of clustering, inertia induces a transition in the cluster’s inner structure. For small inertia, clusters are characterized by the crystalline order typical of overdamped particles, while for large inertia clusters with liquid-like order are observed. In addition, in contrast to microswimmers, where active particles wet the boundary by primarily forming clusters attached to the container walls, in an underdamped inertial active system, walls do not favor cluster formation and effectively annihilate motility-induced wetting phenomena. As a consequence, inertia suppresses cluster nucleation at the system boundaries. Active matter systems composed of self-propelled agents exhibit dynamical clustering. In this work, the authors demonstrate that inertia induces a solid-liquid transition within the cluster structure and suppresses wetting phenomena at the container boundary.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-11"},"PeriodicalIF":5.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01835-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards determining the presence of barren plateaus in some chemically inspired variational quantum algorithms 努力确定某些化学启发变分量子算法中是否存在贫瘠高原
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2024-10-18 DOI: 10.1038/s42005-024-01798-0
Rui Mao, Guojing Tian, Xiaoming Sun
{"title":"Towards determining the presence of barren plateaus in some chemically inspired variational quantum algorithms","authors":"Rui Mao, Guojing Tian, Xiaoming Sun","doi":"10.1038/s42005-024-01798-0","DOIUrl":"10.1038/s42005-024-01798-0","url":null,"abstract":"In quantum chemistry, the variational quantum eigensolver (VQE) is a promising algorithm for molecular simulations on near-term quantum computers. However, VQEs using hardware-efficient circuits face scaling challenges due to the barren plateau problem. This raises the question of whether chemically inspired circuits from unitary coupled cluster (UCC) methods can avoid this issue. Here we provide theoretical evidence indicating they may not. By examining alternated dUCC ansätzes and relaxed Trotterized UCC ansätzes, we find that in the infinite depth limit, a separation occurs between particle-hole one- and two-body unitary operators. While one-body terms yield a polynomially concentrated energy landscape, adding two-body terms leads to exponential concentration. Numerical simulations support these findings, suggesting that popular 1-step Trotterized unitary coupled-cluster with singles and doubles (UCCSD) ansätze may not scale. Our results emphasize the link between trainability and circuit expressiveness, raising doubts about VQEs’ ability to surpass classical methods. The variational quantum eigensolver (VQE) is a promising approach for molecular simulations on quantum computers but faces scaling issues due to the barren plateau problem. The authors’ findings indicate that unitary coupled cluster circuits may not overcome these challenges, raising doubts about VQE’s ability to outperform classical methods.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01798-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observation of molecular resonant double-core excitation driven by intense X-ray pulses 观测强 X 射线脉冲驱动的分子共振双核激发
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2024-10-17 DOI: 10.1038/s42005-024-01804-5
Eetu Pelimanni, Adam E. A. Fouda, Phay J. Ho, Thomas M. Baumann, Sergey I. Bokarev, Alberto De Fanis, Simon Dold, Gilbert Grell, Iyas Ismail, Dimitrios Koulentianos, Tommaso Mazza, Michael Meyer, Maria-Novella Piancastelli, Ralph Püttner, Daniel E. Rivas, Björn Senfftleben, Marc Simon, Linda Young, Gilles Doumy
{"title":"Observation of molecular resonant double-core excitation driven by intense X-ray pulses","authors":"Eetu Pelimanni, Adam E. A. Fouda, Phay J. Ho, Thomas M. Baumann, Sergey I. Bokarev, Alberto De Fanis, Simon Dold, Gilbert Grell, Iyas Ismail, Dimitrios Koulentianos, Tommaso Mazza, Michael Meyer, Maria-Novella Piancastelli, Ralph Püttner, Daniel E. Rivas, Björn Senfftleben, Marc Simon, Linda Young, Gilles Doumy","doi":"10.1038/s42005-024-01804-5","DOIUrl":"10.1038/s42005-024-01804-5","url":null,"abstract":"The ultrashort and intense pulses of X-rays produced at X-ray free electron lasers (XFELs) have enabled unique experiments on the atomic level structure and dynamics of matter, with time-resolved studies permitted in the femto- and attosecond regimes. To fully exploit them, it is paramount to obtain a comprehensive understanding of the complex nonlinear interactions that can occur at such extreme X-ray intensities. Herein, we report on the experimental observation of a resonant double-core excitation scheme in N2, where two 1σ core-level electrons are resonantly promoted to unoccupied $$1{pi }_{g}^{* }$$ molecular orbitals by a single few-femtosecond broad-bandwidth XFEL pulse. The production of these neutral two-site double core hole states is evidenced through their characteristic decay channels, which are observed in good agreement with high-level theoretical calculations. Such multi-core excitation schemes, benefiting from the high interaction cross sections and state- and site-selective nature of resonant X-ray interactions, should be generally accessible in XFEL irradiated molecules, and provide interesting opportunities for chemical analysis and for monitoring ultrafast dynamic processes. XFELs can drive multicore-ionization/excitation processes in the fs timescale of typical core-hole lifetimes in molecules. This paper reports experimental evidence of a single XFEL-pulse-driven resonant double-core excitation mechanism, producing a neutral two-site double-core-hole state in the nitrogen molecule.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01804-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Exceptional classifications of non-Hermitian systems 作者更正:非赫米提系统的异常分类
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2024-10-16 DOI: 10.1038/s42005-024-01822-3
Jung-Wan Ryu, Jae-Ho Han, Chang-Hwan Yi, Moon Jip Park, Hee Chul Park
{"title":"Author Correction: Exceptional classifications of non-Hermitian systems","authors":"Jung-Wan Ryu, Jae-Ho Han, Chang-Hwan Yi, Moon Jip Park, Hee Chul Park","doi":"10.1038/s42005-024-01822-3","DOIUrl":"10.1038/s42005-024-01822-3","url":null,"abstract":"","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-1"},"PeriodicalIF":5.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01822-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observation of parity-time symmetry for evanescent waves 观测蒸发波的奇偶时对称性
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2024-10-16 DOI: 10.1038/s42005-024-01816-1
Zhaoxian Chen, Huan He, Huanan Li, Meijie Li, Jun-long Kou, Yan-qing Lu, Jingjun Xu, Andrea Alù
{"title":"Observation of parity-time symmetry for evanescent waves","authors":"Zhaoxian Chen, Huan He, Huanan Li, Meijie Li, Jun-long Kou, Yan-qing Lu, Jingjun Xu, Andrea Alù","doi":"10.1038/s42005-024-01816-1","DOIUrl":"10.1038/s42005-024-01816-1","url":null,"abstract":"Parity-time (PT) symmetry has enabled the demonstration of fascinating wave phenomena in non-Hermitian systems characterized by precisely balanced gain and loss. Until now, the exploration and observation of PT symmetry in scattering settings have largely been limited to propagating waves. Here, we demonstrate a versatile coupled-resonator acoustic waveguide (CRAW) system that enables the observation of PT-symmetric scattering responses for evanescent waves within a bandgap. By examining the generalized scattering matrix in the evanescent wave regime, we observe hallmark PT-symmetric phenomena—including phase transitions at an exceptional point, anisotropic transmission resonances, and laser-absorber modes—in systems that do not require balanced distributions of gain and loss. Owing to the peculiar energy transfer features of evanescent waves, our results not only demonstrate a distinct pathway for observing PT symmetry, but also enable strategies for exotic energy tunneling mechanisms, paving fresh directions for wave engineering grounded in non-Hermitian physics. Non-Hermitian physics and parity-time (PT) symmetry are of broad interest in classical wave systems. This work demonstrates evanescent wave manipulation and scattering control based on PT symmetry in a versatile coupled-resonator acoustic waveguide (CRAW) system, which not only extends the framework of non-Hermitian physics but also offers strategies for near-field manipulation and control.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01816-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physics informed data-driven near-wall modelling for lattice Boltzmann simulation of high Reynolds number turbulent flows 高雷诺数湍流的晶格玻尔兹曼模拟的物理数据驱动近壁建模
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2024-10-15 DOI: 10.1038/s42005-024-01832-1
Xiao Xue, Shuo Wang, Hua-Dong Yao, Lars Davidson, Peter V. Coveney
{"title":"Physics informed data-driven near-wall modelling for lattice Boltzmann simulation of high Reynolds number turbulent flows","authors":"Xiao Xue, Shuo Wang, Hua-Dong Yao, Lars Davidson, Peter V. Coveney","doi":"10.1038/s42005-024-01832-1","DOIUrl":"10.1038/s42005-024-01832-1","url":null,"abstract":"Data-driven approaches offer novel opportunities for improving the performance of turbulent flow simulations, which are critical to wide-ranging applications from wind farms and aerodynamic designs to weather and climate forecasting. However, current methods for these simulations often require large amounts of data and computational resources. While data-driven methods have been extensively applied to the continuum Navier-Stokes equations, limited work has been done to integrate these methods with the highly scalable lattice Boltzmann method. Here, we present a physics-informed neural network framework for improving lattice Boltzmann-based simulations of near-wall turbulent flow. Using a small amount of data and integrating physical constraints, our model accurately predicts flow behaviour at a wide range of friction Reynolds numbers up to 1.0 × 106. In contradistinction with other models that use direct numerical simulation datasets, this approach reduces data requirements by three orders of magnitude and allows for sparse grid configurations. Our work broadens the scope of lattice Boltzmann applications, enabling efficient large-scale simulations of turbulent flow in diverse contexts. The authors provide a data-driven near-wall modelling framework for the lattice Boltzmann method using IDDES data. Their model can predict flows with friction Reynolds numbers up to 1,000,000 and effectively handle sparse near-wall grids.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01832-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing synergy of spin and orbital currents in heavy metal/ferromagnet multilayers 在重金属/铁磁体多层膜中利用自旋和轨道电流的协同作用
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2024-10-14 DOI: 10.1038/s42005-024-01829-w
Yumin Yang, Zhicheng Xie, Zhiyuan Zhao, Na Lei, Jianhua Zhao, Dahai Wei
{"title":"Harnessing synergy of spin and orbital currents in heavy metal/ferromagnet multilayers","authors":"Yumin Yang, Zhicheng Xie, Zhiyuan Zhao, Na Lei, Jianhua Zhao, Dahai Wei","doi":"10.1038/s42005-024-01829-w","DOIUrl":"10.1038/s42005-024-01829-w","url":null,"abstract":"Spin-orbitronics, exploiting electron spin and/or orbital angular momentum, offers a powerful route to energy-efficient spintronic applications. Recent research on orbital currents in light metals broadens the scope of spin-orbit torque (SOT). However, distinguishing and manipulating orbital torque in heavy metal/ferromagnet (HM/FM) remains a challenge, limiting the promising synergy of spin and orbital currents. Here, we design a HM/FM/FMSOC heterostructure and experimentally separate orbital torque contribution from spin torque by utilizing the distinct diffusion length of spin and orbital currents. Furthermore, we achieve the synergy of spin and orbital torques by controlling their relative strength, and obtain a 110% improvement in torque efficiency compared to the representative Pt/Co bilayer. Our findings not only contribute to a deeper understanding of SOT mechanisms and orbital current transport in HM/FM multilayers, but also highlight the promising prospect of orbital and spin torque synergy for optimizing the efficiency of next-generation spintronic devices. Eliminating the interference of spin current to distinguish and manipulate orbital torque in heavy metal/ferromagnet (HM/FM) heterojunction remains a challenge. Here, the authors design a HM/FM/FMSOC multilayer to separate orbital torque contribution and harness the synergy of spin and orbital currents for enhanced spin-orbit torque.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01829-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasi-two-dimensional pseudo-sessile drops 准二维伪塞滴
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2024-10-14 DOI: 10.1038/s42005-024-01831-2
Tytti Kärki, Into Pääkkönen, Nikos Kyriakopoulos, Jaakko V. I. Timonen
{"title":"Quasi-two-dimensional pseudo-sessile drops","authors":"Tytti Kärki, Into Pääkkönen, Nikos Kyriakopoulos, Jaakko V. I. Timonen","doi":"10.1038/s42005-024-01831-2","DOIUrl":"10.1038/s42005-024-01831-2","url":null,"abstract":"Sessile drops are ubiquitous and important in technological applications. While dynamics of liquid drops have been studied under confinement, the possibility of creating sessile drops with reduced dimensionality has not been explored. Here, we demonstrate a quasi-two-dimensional (Q2D) analogy for axisymmetric sessile three-dimensional (3D) drops. The Q2D drops are created by confining liquids between parallel vertical walls, forming low aspect ratio capillary bridges deformed by gravity. Stationary Q2D drops adopt projected shapes analogous to 3D sessile drops, ranging from circular drops to puddles. When moving, the Q2D drops exhibit capillary and fluid mechanical behaviours conceptually analogous to 3D drops, including impacts and sliding. The Q2D drops also exhibit more complex phenomena such as levitation, various instabilities and pattern formation when subjected to external electric, magnetic and flow fields. The 3D-Q2D analogy suggests that the diverse and often complicated phenomena observed in 3D drops can be studied in the simplified Q2D geometry. Additionally, the Q2D confinement analogy allows exploring phenomena arising from the reduced dimensionality and the altered boundary conditions. Axisymmetric sessile liquid drops are everywhere around us and important in numerous technological applications. Here the authors experimentally prepare quasi-two-dimensional sessile drops and show that they display many similar features as the traditional axisymmetric sessile drops, including analogous equilibrium shape, dynamics, and instabilities.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01831-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信