Shangkun Liu, Minghao Zou, Ning Liu, Yanxin Li, Weimin Zheng
{"title":"A teacher-guided early-learning method for medical image segmentation from noisy labels","authors":"Shangkun Liu, Minghao Zou, Ning Liu, Yanxin Li, Weimin Zheng","doi":"10.1007/s40747-024-01574-1","DOIUrl":"https://doi.org/10.1007/s40747-024-01574-1","url":null,"abstract":"<p>The success of current deep learning models depends on a large number of precise labels. However, in the field of medical image segmentation, acquiring precise labels is labor-intensive and time-consuming. Hence, the challenge of achieving a high-performance model via datasets containing noisy labels has attracted significant research interest. Some existing methods are unable to exclude samples containing noisy labels and some methods still have high requirements on datasets. To solve this problem, we propose a noisy label learning method for medical image segmentation using a mixture of high and low quality labels based on the architecture of mean teacher. Firstly, considering the teacher model’s capacity to aggregate all previously learned information following each training step, we propose to leverage a teacher model to correct noisy label adaptively during the training phase. Secondly, to enhance the model’s robustness, we propose to infuse feature perturbations into the student model. This strategy aims to bolster the model’s ability to handle variations in input data and improve its resilience to noisy labels. Finally, we simulate noisy labels by destroying labels in two medical image datasets: the Automated Cardiac Diagnosis Challenge (ACDC) dataset and the 3D Left Atrium (LA) dataset. Experiments show that the proposed method demonstrates considerable effectiveness. With a noisy ratio of 0.8, compared with other methods, the mean Dice score of our proposed method is improved by 2.58% and 0.31% on ACDC and LA datasets, respectively.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"17 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141973843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Online optimal tracking control of unknown nonlinear singularly perturbed systems using single network adaptive critic with improved learning","authors":"Zhijun Fu, Bao Ma, Dengfeng Zhao, Yuming Yin","doi":"10.1007/s40747-024-01598-7","DOIUrl":"https://doi.org/10.1007/s40747-024-01598-7","url":null,"abstract":"<p>This study is the first time devoted to seek an online optimal tracking solution for unknown nonlinear singularly perturbed systems based on single network adaptive critic (SNAC) design. Firstly, a novel identifier with more efficient parametric multi-time scales differential neural network (PMTSDNN) is developed to obtain the unknown system dynamics. Then, based on the identification results, the online optimal tracking controller consists of an adaptive steady control term and an optimal feedback control term is developed by using SNAC to solve the Hamilton–Jacobi–Bellman (HJB) equation online. New learning law considering filtered parameter identification error is developed for the PMTSDNN identifier and the SNAC, which can realize online synchronous learning and fast convergence. The Lyapunov approach is synthesized to ensure the convergence characteristics of the overall closed loop system consisting of the PMTSDNN identifier, the SNAC and the optimal tracking control policy. Three examples are provided to illustrate the effectiveness of the investigated method.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"7 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141973842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Segmentation-aware relational graph convolutional network with multi-layer CRF for nested named entity recognition","authors":"Daojun Han, Zemin Wang, Yunsong Li, Xiangbo ma, Juntao Zhang","doi":"10.1007/s40747-024-01551-8","DOIUrl":"https://doi.org/10.1007/s40747-024-01551-8","url":null,"abstract":"<p>Named Entity Recognition (NER) is fundamental in natural language processing, involving identifying entity spans and types within a sentence. Nested NER contains other entities, which pose a significant challenge, especially pronounced in the domain of medical-named entities due to intricate nesting patterns inherent in medical terminology. Existing studies can not capture interdependencies among different entity categories, resulting in inadequate performance in nested NER tasks. To address this problem, we propose a novel <b>L</b>ayer-based architecture with <b>S</b>egmentation-aware <b>R</b>elational <b>G</b>raph <b>C</b>onvolutional <b>N</b>etwork (LSRGCN) for Nested NER in the medical domain. LSRGCN comprises two key modules: a shared segmentation-aware encoder and a multi-layer conditional random field decoder. The former part provides token representation including boundary information from sentence segmentation. The latter part can learn the connections between different entity classes and improve recognition accuracy through secondary decoding. We conduct experiments on four datasets. Experimental results demonstrate the effectiveness of our model. Additionally, extensive studies are conducted to enhance our understanding of the model and its capabilities.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"36 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141910469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lang Xiong, Liyun Su, Shiyi Zeng, Xiangjing Li, Tong Wang, Feng Zhao
{"title":"Generalized spatial–temporal regression graph convolutional transformer for traffic forecasting","authors":"Lang Xiong, Liyun Su, Shiyi Zeng, Xiangjing Li, Tong Wang, Feng Zhao","doi":"10.1007/s40747-024-01578-x","DOIUrl":"https://doi.org/10.1007/s40747-024-01578-x","url":null,"abstract":"<p>Spatial–temporal data is widely available in intelligent transportation systems, and accurately solving non-stationary of spatial–temporal regression is critical. In most traffic flow prediction research, the non-stationary solution of deep spatial–temporal regression tasks is typically formulated as a spatial–temporal graph modeling problem. However, there are several issues: (1) the coupled spatial–temporal regression approach renders it unfeasible to accurately learn the dependencies of diverse modalities; (2) the intricate stacking design of deep spatial–temporal network modules limits the interpretation and migration capability; (3) the ability to model dynamic spatial–temporal relationships is inadequate. To tackle the challenges mentioned above, we propose a novel unified spatial–temporal regression framework named Generalized Spatial–Temporal Regression Graph Convolutional Transformer (GSTRGCT) that extends panel model in spatial econometrics and combines it with deep neural networks to effectively model non-stationary relationships of spatial–temporal regression. Considering the coupling of existing deep spatial–temporal networks, we introduce the tensor decomposition to explicitly decompose the panel model into a tensor product of spatial regression on the spatial hyper-plane and temporal regression on the temporal hyper-plane. On the spatial hyper-plane, we present dynamic adaptive spatial weight network (DASWNN) to capture the global and local spatial correlations. Specifically, DASWNN adopts spatial weight neural network (SWNN) to learn the semantic global spatial correlation and dynamically adjusts the local changing spatial correlation by multiplying between spatial nodes embedding. On the temporal hyper-plane, we introduce the Auto-Correlation attention mechanism to capture the period-based temporal dependence. Extensive experiments on the two real-world traffic datasets show that GSTRGCT consistently outperforms other competitive methods with an average of 62% and 59% on predictive performance.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"103 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141910465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guowei Zhang, Xincheng Tang, Li Wang, Huankang Cui, Teng Fei, Hulin Tang, Shangfeng Jiang
{"title":"Repmono: a lightweight self-supervised monocular depth estimation architecture for high-speed inference","authors":"Guowei Zhang, Xincheng Tang, Li Wang, Huankang Cui, Teng Fei, Hulin Tang, Shangfeng Jiang","doi":"10.1007/s40747-024-01575-0","DOIUrl":"https://doi.org/10.1007/s40747-024-01575-0","url":null,"abstract":"<p>Self-supervised monocular depth estimation has always attracted attention because it does not require ground truth data. Designing a lightweight architecture capable of fast inference is crucial for deployment on mobile devices. The current network effectively integrates Convolutional Neural Networks (CNN) with Transformers, achieving significant improvements in accuracy. However, this advantage comes at the cost of an increase in model size and a significant reduction in inference speed. In this study, we propose a network named Repmono, which includes LCKT module with a large convolutional kernel and RepTM module based on the structural reparameterisation technique. With the combination of these two modules, our network achieves both local and global feature extraction with a smaller number of parameters and significantly enhances inference speed. Our network, with 2.31MB parameters, shows significant accuracy improvements over Monodepth2 in experiments on the KITTI dataset. With uniform input dimensions, our network’s inference speed is 53.7% faster than R-MSFM6, 60.1% faster than Monodepth2, and 81.1% faster than MonoVIT-small. Our code is available at https://github.com/txc320382/Repmono.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"12 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141910475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiangkui Jiang, Binglong Ren, Qing Wu, Wuwei Wang, Hong Li
{"title":"DCASAM: advancing aspect-based sentiment analysis through a deep context-aware sentiment analysis model","authors":"Xiangkui Jiang, Binglong Ren, Qing Wu, Wuwei Wang, Hong Li","doi":"10.1007/s40747-024-01570-5","DOIUrl":"https://doi.org/10.1007/s40747-024-01570-5","url":null,"abstract":"<p>Aspect-level sentiment analysis plays a pivotal role in fine-grained sentiment categorization, especially given the rapid expansion of online information. Traditional methods often struggle with accurately determining sentiment polarity when faced with implicit or ambiguous data, leading to limited accuracy and context-awareness. To address these challenges, we propose the Deep Context-Aware Sentiment Analysis Model (DCASAM). This model integrates the capabilities of Deep Bidirectional Long Short-Term Memory Network (DBiLSTM) and Densely Connected Graph Convolutional Network (DGCN), enhancing the ability to capture long-distance dependencies and subtle contextual variations.The DBiLSTM component effectively captures sequential dependencies, while the DGCN component leverages densely connected structures to model intricate relationships within the data. This combination allows DCASAM to maintain a high level of contextual understanding and sentiment detection accuracy.Experimental evaluations on well-known public datasets, including Restaurant14, Laptop14, and Twitter, demonstrate the superior performance of DCASAM over existing models. Our model achieves an average improvement in accuracy by 1.07% and F1 score by 1.68%, showcasing its robustness and efficacy in handling complex sentiment analysis tasks.These results highlight the potential of DCASAM for real-world applications, offering a solid foundation for future research in aspect-level sentiment analysis. By providing a more nuanced understanding of sentiment, our model contributes significantly to the advancement of fine-grained sentiment analysis techniques.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"191 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141910466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integration of attention mechanism and CNN-BiGRU for TDOA/FDOA collaborative mobile underwater multi-scene localization algorithm","authors":"Duo Peng, Ming Shuo Liu, Kun Xie","doi":"10.1007/s40747-024-01583-0","DOIUrl":"https://doi.org/10.1007/s40747-024-01583-0","url":null,"abstract":"<p>The aim of this study is to address the issue of TDOA/FDOA measurement accuracy in complex underwater environments, which is affected by multipath effects and variations in water sound velocity induced by the challenging nature of the underwater environment. To this end, a novel cooperative localisation algorithm has been developed, integrating the attention mechanism and convolutional neural network-bidirectional gated recurrent unit (CNN-BiGRU) with TDOA/FDOA and two-step weighted least squares (ImTSWLS). This algorithm is designed to enhance the accuracy of TDOA/FDOA measurements in complex underwater environments. The algorithm initially makes use of the considerable capacity of a convolutional neural network (CNN) to extract profound spatial and frequency domain characteristics from multimodal data. These features are of paramount importance for the characterisation of underwater signal propagation, particularly in complex environments. Subsequently, through the use of a bidirectional gated recurrent unit (BiGRU), the algorithm is able to effectively capture long-term dependencies in time series data. This enables a more comprehensive analysis and understanding of the changing pattern of signals over time. Furthermore, the incorporation of an attention mechanism within the algorithm enables the model to focus more on the signal features that have a significant impact on localisation, while simultaneously suppressing the interference of extraneous information. This further enhances the efficiency of identifying and utilising the key signal features. ImTSWLS is employed to resolve the position and velocity data following the acquisition of the predicted TDOA/FDOA, thereby enabling the accurate estimation of the position and velocity of the mobile radiation source. The algorithm was subjected to a series of tests in a variety of simulated underwater environments, including different sea states, target motion speeds and base station configurations. The experimental results demonstrate that the algorithm exhibits a deviation of only 2.88 m/s in velocity estimation and 2.58 m in position estimation when the noise level is 20 dB. The algorithm presented in this paper demonstrates superior performance in both position and velocity estimation compared to other algorithms.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"14 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141910474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Branislav Radomirovic, Nebojsa Bacanin, Luka Jovanovic, Vladimir Simic, Angelinu Njegus, Dragan Pamucar, Mario Köppen, Miodrag Zivkovic
{"title":"Optimizing long-short term memory neural networks for electroencephalogram anomaly detection using variable neighborhood search with dynamic strategy change","authors":"Branislav Radomirovic, Nebojsa Bacanin, Luka Jovanovic, Vladimir Simic, Angelinu Njegus, Dragan Pamucar, Mario Köppen, Miodrag Zivkovic","doi":"10.1007/s40747-024-01592-z","DOIUrl":"https://doi.org/10.1007/s40747-024-01592-z","url":null,"abstract":"<p>Electroencephalography (EEG) serves as a crucial neurodiagnostic tool by recording the electrical brain activity via attached electrodes on the patient’s head. While artificial intelligence (AI) exhibited considerable promise in medical diagnostics, its potential in the realm of neurodiagnostics remains underexplored. This research addresses this gap by proposing an innovative approach employing time-series classification of EEG data, leveraging long-short-term memory (LSTM) neural networks for the identification of abnormal brain activity, particularly seizures. To enhance the performance of the proposed model, metaheuristic algorithms were employed for optimizing hyperparameter collection. Additionally, a tailored modification of the variable neighborhood search (VNS) is introduced, specifically tailored for this neurodiagnostic application. The effectiveness of this methodology is evaluated using a carefully curated dataset comprising real-world EEG recordings from both healthy individuals and those affected by epilepsy. This software-based approach demonstrates noteworthy results, showcasing its efficacy in anomaly and seizure detection, even when working with relatively modest sample sizes. This research contributes to the field by illuminating the potential of AI in neurodiagnostics, presenting a methodology that enhances accuracy in identifying abnormal brain activities, with implications for improved patient care and diagnostic precision.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"34 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141910477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianjun Ni, Tong Shen, Yonghao Zhao, Guangyi Tang, Yang Gu
{"title":"An improved cross-domain sequential recommendation model based on intra-domain and inter-domain contrastive learning","authors":"Jianjun Ni, Tong Shen, Yonghao Zhao, Guangyi Tang, Yang Gu","doi":"10.1007/s40747-024-01590-1","DOIUrl":"https://doi.org/10.1007/s40747-024-01590-1","url":null,"abstract":"<p>Cross-domain recommendation aims to integrate data from multiple domains and introduce information from source domains, thereby achieving good recommendations on the target domain. Recently, contrastive learning has been introduced into the cross-domain recommendations and has obtained some better results. However, most cross-domain recommendation algorithms based on contrastive learning suffer from the bias problem. In addition, the correlation between the user’s single-domain and cross-domain preferences is not considered. To address these problems, a new recommendation model is proposed for cross-domain scenarios based on intra-domain and inter-domain contrastive learning, which aims to obtain unbiased user preferences in cross-domain scenarios and improve the recommendation performance of both domains. Firstly, a network enhancement module is proposed to capture users’ complete preference by applying a graphical convolution and attentional aggregator. This module can reduce the limitations of only considering user preferences in a single domain. Then, a cross-domain infomax objective with noise contrast is presented to ensure that users’ single-domain and cross-domain preferences are correlated closely in sequential interactions. Finally, a joint training strategy is designed to improve the recommendation performances of two domains, which can achieve unbiased cross-domain recommendation results. At last, extensive experiments are conducted on two real-world cross-domain scenarios. The experimental results show that the proposed model in this paper achieves the best recommendation results in comparison with existing models.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"152 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141909284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel iteration scheme with conjugate gradient for faster pruning on transformer models","authors":"Jun Li, Yuchen Zhu, Kexue Sun","doi":"10.1007/s40747-024-01595-w","DOIUrl":"https://doi.org/10.1007/s40747-024-01595-w","url":null,"abstract":"<p>Pre-trained models based on the Transformer architecture have significantly advanced research within the domain of Natural Language Processing (NLP) due to their superior performance and extensive applicability across multiple technological sectors. Despite these advantages, there is a significant challenge in optimizing these models for more efficient deployment. To be concrete, the existing post-training pruning frameworks of transformer models suffer from inefficiencies in the crucial stage of pruning accuracy recovery, which impacts the overall pruning efficiency. To address this issue, this paper introduces a novel and efficient iteration scheme with conjugate gradient in the pruning recovery stage. By constructing a series of conjugate iterative directions, this approach ensures each optimization step is orthogonal to the previous ones, which effectively reduces redundant explorations of the search space. Consequently, each iteration progresses effectively towards the global optimum, thereby significantly enhancing search efficiency. The conjugate gradient-based faster-pruner reduces the time expenditure of the pruning process while maintaining accuracy, demonstrating a high degree of solution stability and exceptional model acceleration effects. In pruning experiments conducted on the BERT<sub>BASE</sub> and DistilBERT models, the faster-pruner exhibited outstanding performance on the GLUE benchmark dataset, achieving a reduction of up to 36.27% in pruning time and a speed increase of up to 1.45× on an RTX 3090 GPU.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"55 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141899854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}