Xiaode Liu, Yufei Guo, Yuanpei Chen, Jie Zhou, Yuhan Zhang, Weihang Peng, Xuhui Huang, Zhe Ma
{"title":"利用尖峰神经网络和渐近梯度强化学习增强未知环境下的导航性能","authors":"Xiaode Liu, Yufei Guo, Yuanpei Chen, Jie Zhou, Yuhan Zhang, Weihang Peng, Xuhui Huang, Zhe Ma","doi":"10.1007/s40747-024-01777-6","DOIUrl":null,"url":null,"abstract":"<p>Achieving accurate and generalized autonomous navigation in unknown environments poses a significant challenge in robotics and artificial intelligence. Animals exhibits superlative navigation capabilities by combining the representation of internal neurals and sensory cues of self-motion and external information. This paper proposes a brain-inspired navigation method based upon the spiking neural networks (SNN) and reinforcement learning, integrated with a lidar system that serves as the local environment explorer, by which realizes high performance of obstacle avoidance and target arrival in mapless circumstances. An asymptotic gradient method is introduced to optimize the backpropagation during training, which facilitates the improvement of model robustness. The results of our experiments conducted on the Gazebo platform showcase how our approach effectively improves navigation performance in various intricate environments. Our approach yielded a higher success navigation rate ranging from 2% to 5%, depending on the SNN timesteps. Considering the inherent lower computational cost of SNN, this work contributes to advancing the fusion of SNN and reinforcement learning techniques for energy-efficient autonomous navigation tasks in real-world mapless scenarios.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"30 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing navigation performance in unknown environments using spiking neural networks and reinforcement learning with asymptotic gradient method\",\"authors\":\"Xiaode Liu, Yufei Guo, Yuanpei Chen, Jie Zhou, Yuhan Zhang, Weihang Peng, Xuhui Huang, Zhe Ma\",\"doi\":\"10.1007/s40747-024-01777-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Achieving accurate and generalized autonomous navigation in unknown environments poses a significant challenge in robotics and artificial intelligence. Animals exhibits superlative navigation capabilities by combining the representation of internal neurals and sensory cues of self-motion and external information. This paper proposes a brain-inspired navigation method based upon the spiking neural networks (SNN) and reinforcement learning, integrated with a lidar system that serves as the local environment explorer, by which realizes high performance of obstacle avoidance and target arrival in mapless circumstances. An asymptotic gradient method is introduced to optimize the backpropagation during training, which facilitates the improvement of model robustness. The results of our experiments conducted on the Gazebo platform showcase how our approach effectively improves navigation performance in various intricate environments. Our approach yielded a higher success navigation rate ranging from 2% to 5%, depending on the SNN timesteps. Considering the inherent lower computational cost of SNN, this work contributes to advancing the fusion of SNN and reinforcement learning techniques for energy-efficient autonomous navigation tasks in real-world mapless scenarios.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-024-01777-6\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01777-6","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Enhancing navigation performance in unknown environments using spiking neural networks and reinforcement learning with asymptotic gradient method
Achieving accurate and generalized autonomous navigation in unknown environments poses a significant challenge in robotics and artificial intelligence. Animals exhibits superlative navigation capabilities by combining the representation of internal neurals and sensory cues of self-motion and external information. This paper proposes a brain-inspired navigation method based upon the spiking neural networks (SNN) and reinforcement learning, integrated with a lidar system that serves as the local environment explorer, by which realizes high performance of obstacle avoidance and target arrival in mapless circumstances. An asymptotic gradient method is introduced to optimize the backpropagation during training, which facilitates the improvement of model robustness. The results of our experiments conducted on the Gazebo platform showcase how our approach effectively improves navigation performance in various intricate environments. Our approach yielded a higher success navigation rate ranging from 2% to 5%, depending on the SNN timesteps. Considering the inherent lower computational cost of SNN, this work contributes to advancing the fusion of SNN and reinforcement learning techniques for energy-efficient autonomous navigation tasks in real-world mapless scenarios.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.