CoatingsPub Date : 2024-09-15DOI: 10.3390/coatings14091193
Liang Cao, Rui Xi, Chen Zhou, Gaohui He, Feng Yang, Lingna Xu, He Li
{"title":"Polymer Capacitor Films with Nanoscale Coatings for Dielectric Energy Storage: A Review","authors":"Liang Cao, Rui Xi, Chen Zhou, Gaohui He, Feng Yang, Lingna Xu, He Li","doi":"10.3390/coatings14091193","DOIUrl":"https://doi.org/10.3390/coatings14091193","url":null,"abstract":"Enhancing the energy storage properties of dielectric polymer capacitor films through composite materials has gained widespread recognition. Among the various strategies for improving dielectric materials, nanoscale coatings that create structurally controlled multiphase polymeric films have shown great promise. This approach has garnered considerable attention in recent years due to its effectiveness. This review examines surface-coated polymer composites used for dielectric energy storage, discussing their dielectric properties, behaviors, and the underlying physical mechanisms involved in energy storage. The review thoroughly examines the fabrication methods for nanoscale coatings and the selection of coating materials. It also explores the latest advancements in the rational design and control of interfaces in organic–inorganic, organic–organic, and heterogeneous multiphase structures. Additionally, the review delves into the structure–property relationships between different interfacial phases and various interface structures, analyzing how nanoscale coatings the impact dielectric constant, breakdown strength, conduction and charge transport mechanisms, energy density and efficiency, thermal stability, and electrothermal durability of polymeric capacitor films. Moreover, the review summarizes relevant simulation methods and offers computational insights. The potential practical applications and characteristics of such nanoscale coating techniques are discussed, along with the existing challenges and practical limitations. Finally, the review concludes with a summary and outlook, highlighting potential research directions in this rapidly evolving field.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CoatingsPub Date : 2024-09-14DOI: 10.3390/coatings14091191
Juan Carlos Ruge, Juan Gabriel Bastidas-Martínez, Camilo E. Herrera, Jhan Piero Rojas, Renato P. da Cunha
{"title":"Analysis of Flexural Strength in Asphalt Concrete Specimens Using a Net-Shaped Inclusion of Waste Coffee Capsules","authors":"Juan Carlos Ruge, Juan Gabriel Bastidas-Martínez, Camilo E. Herrera, Jhan Piero Rojas, Renato P. da Cunha","doi":"10.3390/coatings14091191","DOIUrl":"https://doi.org/10.3390/coatings14091191","url":null,"abstract":"Asphalt mixtures can include various recycled materials, which often replace some of the coarse and fine aggregate components. In some cases, a percentage of material called mineral filler, made up of particles that pass through a No. 200-sieve, is also admitted in the preparation of the mixture. With the increasing amount of packaging used as containers for various products, many of which need to be disposed of properly and become an environmental burden in warehouses without proper reuse, there is potential for including these elements in the sustainable modification of asphalt mixtures. This research suggests reusing plastic and aluminum coffee capsules, which are difficult to recycle. While most studies crush recycled materials to sizes smaller than 0.075 mm for use in mixes, this research focuses on assembling the waste capsules into a network of cells inside specimens subjected to bending to observe the mechanical behavior of the asphalt mixture. The findings indicate that incorporating capsule networks can lead to a significant enhancement in the flexural strength of the examined beams, with an increase of up to 200%. Moreover, the deformation is reduced by an average of 66% upon the emergence of the initial crack in the specimen.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CoatingsPub Date : 2024-09-14DOI: 10.3390/coatings14091190
Hao Xu, Minghao Jia, Pei Hu, Shengyu Liu, Gang Hu
{"title":"The Evaluation and Analysis of the Anti-Corrosion Performance of the Sealing Material B72 for Metal Artifacts Based on Electrochemical Noise","authors":"Hao Xu, Minghao Jia, Pei Hu, Shengyu Liu, Gang Hu","doi":"10.3390/coatings14091190","DOIUrl":"https://doi.org/10.3390/coatings14091190","url":null,"abstract":"Paraloid B-72 (B72), as a transparent, colorless polymer material, has good film-forming ability when dissolved in acetone and is widely used as a sealing material for metal artifacts. In order to analyze and evaluate the preservation performance of B72 as a sealing material on the substrate of metal artifacts, a variety of electrochemical methods, mainly electrochemical noise (EN), and scanning electron microscopy (SEM) were applied to evaluate the B72 coating. The results showed that the B72 coating had a good preservation effect at the initial stage, and its poor water resistance led to the loss of its effectiveness after a few days of immersion. Compared with conventional electrochemical methods, electrochemical noise is non-destructive, which cannot cause new corrosion on the metal substrate and can well characterize the corrosion rate of the test system, and the results of its time domain and frequency domain analyses can correspond well with the polarization resistance and impedance spectra. Electrochemical noise is an effective method for evaluating the anti-corrosion performance of material preservation coatings.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on Drag Reduction for Flexible Skin Inspired by Bionics","authors":"Pengfei Zhao, Xin Li, Zhengjie Luo, Zhenyan Jia, Kaisheng Zhang, Xiaoping Zhang","doi":"10.3390/coatings14091189","DOIUrl":"https://doi.org/10.3390/coatings14091189","url":null,"abstract":"Underwater vehicles typically rely on batteries or other energy sources for operation, where drag reduction can significantly lower energy consumption and extend operational endurance. Inspired by the skin structure of loaches, a flexible structure with scales and mucus pores was designed. First, numerical simulations were conducted. To accurately demonstrate the interaction between the flexible flow field and the fluid flow field and to capture the movement boundaries of the plates, a bidirectional fluid–structure interaction simulation method was used. The numerical results indicate that the flexible structure has a positive effect on drag reduction. In channel experiments, the drag reduction effects of flexible and non-flexible structures were compared. Both showed optimal drag reduction at a water flow speed of 2 m/s and mucus flow speed of 0.1 m/s. The maximum drag reduction rate for the flexible structure was 28.5%, compared to 22.8% for the non-flexible structure. This difference is attributed to the flexible structure altering the flow pattern of the near-wall boundary layer, reducing the velocity gradient of the boundary layer, and increasing its thickness. The findings of this study can provide guidance for future research on flexible surface drag reduction technologies.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CoatingsPub Date : 2024-09-13DOI: 10.3390/coatings14091187
Guihua Hu, Xiaowei Chen, Song Zhao, Jian Ouyang
{"title":"Rheological Properties and Performance Evaluation of Different Types of Composite-Modified Asphalt in Cold Regions","authors":"Guihua Hu, Xiaowei Chen, Song Zhao, Jian Ouyang","doi":"10.3390/coatings14091187","DOIUrl":"https://doi.org/10.3390/coatings14091187","url":null,"abstract":"In low-temperature environments, asphalt materials harden easily and become brittle, and the repeated action of traffic load further aggravates the cracking of and damage to the asphalt mixture. In order to explore high-performance asphalt pavement materials that are more suitable for cold climates, this paper selected four modifiers, namely SBS, rubber powder, SBR and TPS. With SBS as the main agent, combined with other modifiers, three types of base asphalts with grades of 70#, 90# and 110# were compositely modified to prepare 12 different combinations of composite-modified asphalt samples. The optimal dosage of the modifier was determined by the basic performance test of asphalt, and the compatibility, interaction energy and mechanical properties of the modifier and base asphalt at different temperatures were analyzed by molecular dynamics simulation. Subsequently, the high- and low-temperature rheological properties of various modified asphalts were systematically evaluated using a dynamic shear rheology test (DSR) and a bending beam rheology test (BBR), and the rheological properties and road performance indicators of each composite-modified asphalt were comprehensively compared so as to select the road materials most suitable for cold areas. The research results show that different grades of base asphalt and modifiers show good compatibility in the range of 160–175 °C. Among them, rubber powder and TPS modifier significantly improve the high-temperature mechanical properties of SBS-modified asphalt, while rubber powder and SBR modifier significantly improve its low-temperature mechanical properties. The DSR and BBR test results further show that SBS/rubber powder composite-modified asphalt exhibits excellent rheological properties under both high- and low-temperature conditions, and is the preferred solution for road materials in cold regions.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CoatingsPub Date : 2024-09-13DOI: 10.3390/coatings14091188
Jiaxing Wan, Donghua Wang, Kai Cui
{"title":"Study on the Force Transfer Process of Bolt–Slurry Interface of Full-Length Bonding Anchor System at Earthen Sites","authors":"Jiaxing Wan, Donghua Wang, Kai Cui","doi":"10.3390/coatings14091188","DOIUrl":"https://doi.org/10.3390/coatings14091188","url":null,"abstract":"The debonding and sliding of the bolt–slurry interface is the main failure form of the full-length bonding anchor system (FLBAS) of earthen sites, so it is urgent to carry out a quantitative study of the force transfer process of the anchorage interface. Based on field test results and existing research results, it was found that the bilinear bond–slip model is in line with the description of the constitutive relationship of the bolt–slurry interface. The whole process of debonding slip is discussed accordingly; the expressions for the slip, the axial strain of the bolt, and the load displacement at the bolt–slurry interface corresponding to the different loading stages are deduced; and the calculations of the ultimate load-carrying capacity and the effective anchorage length are given at the same time. On this basis, the bond–slip model parameters were calibrated by identifying the characteristic points of the bond–slip curve; a multi-parameter cross-comparison validation of the reasonableness of the theoretical analytical model was carried out on the basis of in situ pull-out tests; and the law of the influence of anchor bond length and axial stiffness on the anchorage performance was analyzed. The analytical model proposed in this study is widely applicable to the analysis of force transfer processes at the bolt–slurry interface in the presence of complete debonding phenomena and provides a useful reference for optimizing the design of anchors while minimizing interventions.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CoatingsPub Date : 2024-09-13DOI: 10.3390/coatings14091186
Maria Wiśniewska, Grzegorz Kubicki, Mateusz Marczewski, Volf Leshchynsky, Luca Celotti, Mirosław Szybowicz, Dariusz Garbiec
{"title":"Aerosol-Deposited 8YSZ Coating for Thermal Shielding of 3YSZ/CNT Composites","authors":"Maria Wiśniewska, Grzegorz Kubicki, Mateusz Marczewski, Volf Leshchynsky, Luca Celotti, Mirosław Szybowicz, Dariusz Garbiec","doi":"10.3390/coatings14091186","DOIUrl":"https://doi.org/10.3390/coatings14091186","url":null,"abstract":"High-temperature conditions are harmful for carbon nanotube-based (CNT-based) composites, as CNTs are susceptible to oxidation. On the other hand, adding CNTs to ceramics with low electrical conductivity, such as 3YSZ, is beneficial because it allows the production of complex-shaped samples with spark plasma sintering (SPS). A shielding coating system may be applied to prevent CNT oxidation. In this work, the 8YSZ (yttria-stabilized zirconia) thermal shielding coating system was deposited by aerosol deposition (AD) to improve the composite’s resistance to CNT degradation without the use of bond-coat sublayers. Additionally, the influence of the annealing process on the mechanical properties and microstructure of the composite was evaluated by nanoindentation, scratch tests, scanning electron microscopy (SEM), X-ray diffraction (XRD), flame tests, and light microscopy (LM). Annealing at 1200 °C was the optimal temperature for heat treatment, improving the coating’s mechanical strength (the first critical load increased from 0.84 N to 3.69 N) and promoting diffusion bonding between the compacted powder particles and the substrate. The deposited coating of 8YSZ increased the composite’s thermal resistance by reducing the substrate’s heating rate and preventing the oxidation of CNTs.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CoatingsPub Date : 2024-09-11DOI: 10.3390/coatings14091174
Hitoshi Soyama
{"title":"Improvement of Fatigue Strength in Additively Manufactured Aluminum Alloy AlSi10Mg via Submerged Laser Peening","authors":"Hitoshi Soyama","doi":"10.3390/coatings14091174","DOIUrl":"https://doi.org/10.3390/coatings14091174","url":null,"abstract":"As the fatigue properties of as-built components of additively manufactured (AM) metals are considerably weaker than those of wrought metals because of their rougher surface, post-processing is necessary to improve the fatigue properties. To demonstrate the improvement in the fatigue properties of AM metals via post-processing methods, the fabrication of AlSi10Mg, i.e., PBF–LS/AlSi10Mg, through powder bed fusion (PBF) using laser sintering (LS) and its treatment via submerged laser peening (SLP), using a fiber laser and/or a Nd/YAG laser, was evaluated via plane bending fatigue tests. In SLP, laser ablation (LA) is generated by a pulsed laser and a bubble is generated after LA, which behaves like a cavitation bubble that is referred to as “laser cavitation (LC)”. In this paper, LA-dominated SLP is referred to as “laser treatment (LT)”, while LC collapse-dominated SLP is referred to as “laser cavitation peening (LCP)”, as the impact of LC collapse is used for peening. It was revealed that SLP using a fiber laser corresponded with LT rather than LCP. It was demonstrated that the fatigue strength at N = 107 was 85 MPa for LCP and 103 MPa for the combined process of blasting (B) + LT + LCP, whereas the fatigue strength of the as-built specimen was 54 MPa.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Laser-Melted Wc/Ni-Based Coating Remelting Study on Q235 Steel Surface","authors":"Xianglin Wu, Junhao Chen, Jiang Huang, Wenqing Shi, Qingheng Wang, Fenju An, Jingquan Wu","doi":"10.3390/coatings14091172","DOIUrl":"https://doi.org/10.3390/coatings14091172","url":null,"abstract":"In order to study the effect of laser remelting on the properties of Q235 steel, WC-enhanced nickel-based remelted layers at different powers were prepared on the surface of Q235 steel using laser cladding technology. Their micro-morphologies were observed using scanning electron microscopy, and their hardness and corrosion resistance were tested using a Vickers hardness tester and an electrochemical workstation. The results show that when the laser power reached 1600 W, the number of WC particles was reduced, the fragments of the broken reinforcement particles were more evenly distributed, the fused layer had the highest uniformity, and the microhardness was more average. Additionally, the corrosion current density reached 2.397 × 10−5 A/cm2, the self-corrosion potential Ecorr of the remelted coatings was positive relative to the substrate, the corrosion resistance was the highest, the coating was uniformly flat, and its hardness was the highest.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CoatingsPub Date : 2024-09-11DOI: 10.3390/coatings14091169
Christian Semmler, Willi Schwan, Andreas Killinger
{"title":"Metallization of Carbon Fiber-Reinforced Plastics (CFRP): Influence of Plasma Pretreatment on Mechanical Properties and Splat Formation of Atmospheric Plasma-Sprayed Aluminum Coatings","authors":"Christian Semmler, Willi Schwan, Andreas Killinger","doi":"10.3390/coatings14091169","DOIUrl":"https://doi.org/10.3390/coatings14091169","url":null,"abstract":"Carbon fiber-reinforced plastics (CFRPs) have broad applications as lightweight structural materials due to their remarkable strength-to-weight ratio. Aluminum is often used as a bond coating to ensure adhesion between CFRPs and further coatings with a higher melting temperature. However, challenges persist in optimizing their surface properties and adhesion attributes for diverse applications. This investigation explores the impact of sandblasting and plasma pretreatment on CFRP surfaces and their influence on plasma-sprayed aluminum coatings. Two distinct CFRP substrates, distinguished by their cyanate ester and epoxy resin matrices, and two different aluminum powder feedstocks were employed. Plasma pretreatment induced micro-surface roughening in the range of 0.5 µm and significantly reduced the contact angles on polished specimens. Notably, on sandblasted specimens, plasma-activated surfaces displayed improved wetting behavior, which is attributed to the removal of polymeric fragments and augmented fiber exposure. Aluminum splats show a better interaction with carbon fibers compared to a polymeric matrix material. The impact of plasma activation on the coating adhesion proved relatively limited. All samples with plasma activation had deposition efficiencies that increased by 12.5% to 34.4%. These findings were supported by SEM single-splat analysis and contribute to a deeper comprehension of surface modification strategies tailored to CFRPs.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}